e

PRAXIS

Echtzeit-Raytracing, Teil 1

Im

PC UNDERGROUND

. ‘ Die Quelltexte sowie die fertig tbersetzten
Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

Mit der Rechenleistung heutiger Hardware lasst sich Raytracing in Echtzeit

durchfihren. Wir zeigen lhnen die

Hardware mit OpenGL richtig ein.

CARSTEN DACHSBACHER

rotz der schnell zunehmenden

I Leistung moderner 3D-Hard-

ware gibt es immer noch zahlrei-

che Verfechter des Raytracings. Exper-

ten arbeiten an Raytracing-Hardware,

wobei aus dem Hochschulbereich wich-

tige Impulse kommen: http://graphics.
cs.uni-sb.de/RTRT/.

durch den Bildschirm zu schief3en, um
den Farbwert des Lichts, das aus dieser
Richtung zum Betrachter gelangt, zu be-
stimmen.

Entlang dieser Halbgeraden berech-
nen Sie die Schnittpunkte mit allen Ob-
jekten der Szene und wahlen den néchst-
liegenden Schnittpunkt zum Betrachter
aus. Fur einen getroffenen Oberflachen-
punkt berechnen Sie eine lokale Be-
leuchtung wie nach dem Phong-Modell.

Lichtquellen der Sze-

Betrar;ter

ne, die andere Objek-
te verdecken konnen,
sowie Materialeigen-
schaften beeinflussen
die Berechnung.
Wenn die Oberflache
spiegelnde Eigen-
schaften besitzt oder
teilweise transparent
ist, ruft sich der
Raytracing-Algorith-

VOM BETRACHTER AUS wird durch jeden Pixel des Bildschirms

ein Strahl geschossen.

Hierbei werden Dreiecke mit Multi-
prozessor-Rechnern oder Rechen-
Clustern dargestellt. Die Vorteile beim
Raytracing liegen im einfachen Algo-
rithmus, in der Beherrschbarkeit von
sehr groRRen 3D-Szenen mit mehreren
hundert Millionen Dreiecken und in der
vergleichsweise leichten Programmie-
rung von Oberflachen-Shadern: Damit
lassen sich Spiegelungen, Transparenz
und Schatteneffekte darstellen. In die-
sem Artikel lernen Sie die Methoden und
Techniken kennen, um auf Ihrem Com-
puter Raytracing-Szenen mit klassi-
schen geometrischen Primitiven wie
Ebene, Kugeln und Zylinder zum Leben
zu erwecken.

Der Klassische Raytracing-Algorith-
mus ist rekursiver Natur. Er beginnt da-
mit, Strahlen von der Betrachterposition

190 PC Magazin 2,/2003

mus rekursiv auf, um
den Farbbeitrag die-
ser Lichtstrahlen zu
berechnen.

Der Vorteil des Raytracings liegt da-
rin, dass die Beleuch-

. Setzen Sie Grafik-

Vektor (up) und den Offnungswinkel
(fov). Damit kénnen Sie die Sichtpyra-
mide aus dem ersten Bild aufspannen.
Die bendtigten Vektoren z, right und up
berechnen Sie mit

z =to - from;

right = z x up;

up =z x right;
x ist das Kreuzprodukt. Die Vektoren
werden anschlieend normalisiert, und
right- und up-Vektor werden noch mit
tan(FOV) bzw. tan(FOV/aspectRatio)
skaliert. Ein Strahl vom Betrachter in die
3D-Szene durch den Pixel mit den Ko-
ordinaten (Xx,y) besitzt den Startpunkt
pos und die Richtung dir. Mit width und
height bezeichnen Sie die GroRe des
Bildschirms:

dir = z + right *

(2*x/width-1.0)

+up*(2*y/height-1.0);
Den Code fir die virtuelle Kamera fin-
den Sie in der Datei RTCamera.h auf der
Heft-CD. Dort befindet sich auch eine
Routine, um die 2D-Position eines
Punkts im Raum zu berechnen. Diese ist
sehr sinnvoll, weil Sie damit 2D-Boun-
ding-Boxes bestimmen.

tungsberechnung und

die Spiegelungs- und

Transparenzeffekte s
frei programmierbar _O_ _
sind. Damit erreichen D

Sie Effekte wie das
Bumpmapping mit
weniger Aufwand als
bei 3D-Grafikkarten.

Wie berechnen Sie
die Strahlen, die Sie in
die 3D-Szene schie-
Ren? Zunachst defi-
nieren Sie eine virtu-
elle Kamera durch ih-

"Primarstrahl

Reflexion

re Position (pos), den
Punkt, auf den sie
blickt (to), den Up-

PRIMARSTRAHLEN (BLAU) reflektieren (rot) an Objekten: Auch
Schattentests (gelb) sind Schnittpunktberechnungen.

Wenn Sie eine Auflésung von 640 x
480 Pixeln in einer Szene mit 20 Objek-
ten verwenden und durch jeden Pixel des
Bildschirms einen Strahl schieRen, be-
stimmen Sie mit 640*480*20=6144000
Schnittpunktberechnungen nur die zu-
erst getroffenen Oberflachen. Diese
Schnittpunktberechnungen der Primér-
strahlen lassen sich mehrfach optimie-
ren. Sie kénnen die Zahlen der benétig-
ten Strahlen reduzieren, und Sie kdnnen
die Schnittpunktberechnungen ver-
bessern.

Der bendtigte Rechenaufwand héngt
von der Auflésung des Bildes ab. Nur
kdnnen Sie die Aufldsung nicht beliebig

formationen eines berechneten Strahls
zu speichern:

typedef struct

U32 flag;
COLOR lighting;
JTRACEDPOINT;

Diese Struktur wird flr einen Primér-
strahl durch Raytracing ausgefullt. Auf3er

ZUERST BERECHNEN SIE einen Strahl pro
8x8-Block: Rot zeigt Objekt 1 getroffen,
grun Objekt 2.

verschlechtern, wenn eine bestimmte
Darstellungsqualitat erhalten bleiben
soll. Aber Sie konnen Bereiche des Bilds,
in denen kein Objekt oder dieselbe
Oberflache zu sehen ist, gréber abtasten.

Das einfache Prinzip: Beginnen Sie
damit, fur jeden Block von 8-x-8-Pixeln
(oder einer anderen initialen GroRe) ei-
nen Strahl zu berechnen. Anschlief3end
konnen Sie feststellen, ob dieser Block
eine feinere Abtastung — also mehr be-
rechnete Strahlen — benétigt oder ob die
Information ausreicht, um interpolierte
Farbwerte zu berechnen. Wenn das der
Fall ist, werden die Farbwerte der Ecken
des 8-x-8-Blocks interpoliert und keine
weiteren Strahlen mehr berechnet.

Jetzt mussen Sie nur eine L&sung fin-
den, damit Sie nicht dieselben Strahlen
mehrmals berechnen wie bei der Unter-
teilung. Weiterhin gilt es, passende Me-
thoden der Unterteilung und Interpola-
tion zu entwickeln. Zundchst soll uns die
folgende Struktur genligen, um die In-

EIN ERSTER UNTERTEILUNGSSCHRITT
grenzt die Grenze ab, heller gefarbte Pixel
sind durch Interpolation statt Raytracing
bestimmt.

dem Farbwert speichern Sie im flag-Wert
die Information, anhand der Sie entschei-
den, ob ein Block weiter unterteilt wird
oder ob die Farbinterpolation gentgt.
Darin sind beispielsweise ein ldentifier
codiert, der die getroffene Oberflache re-
présentiert, sowie die Information, ob
sich der getroffene Oberflachenpunktim
Schatten einer Lichtquelle befindet. Spé-
ter konnen Sie diese Struktur erweitern,
beispielsweise um diffuse und spekulare
Farbwerte, Textur-Koordinaten oder
Fogging-Parameter.

Wenn Sie den Sourcecode durchsehen,
sehen Sie an einigen Stellen Optimierun-
gen, die die interne Reprasentation der /E-
EE-Float-Variablen ausnutzt. Floats beste-
hen aus 32 Bit, wobei das oberste das Vor-
zeichen-Bit ist. Weiterhin sind 8 Bit fur
den Exponenten und 23 Bit fur die Man-
tisse reserviert.

Vergleichsoperationen mit Floating-
Point-Werten sind oft langsam. Wenn es
sich z.B. um einen Vorzeichentest handelt,
kénnen Sie auf die Variable als Integer-
Wert zugreifen und stattdessen mit der
Integer-Pipeline den Vergleich durch-

fuhren. Dazu das Makro:
#define SIR(x) ((signed int&)x)
#define IR(x) ((unsigned int&)x)

PC UNDERGROUND
PRAXIS

af

Schicken Sie durch jeden Pixel maxi-
mal einen Strahl. Dazu legen Sie eine Ta-
belle miteinem Zeiger fuir jeden Pixel auf
TRACEDPOINT-Strukturen an.
Wenn noch kein Strahl fiir einen Pixel
berechnet wird, enthélt der entsprechen-
de Eintrag einen NULL-Pointer, sonst
einen Zeiger auf die Struktur mit den be-
rechneten Informationen. Um zu ver-
meiden, dass Sie fUr jeden Pixel Speicher
anfordern mussen, legen Sie sich einen
genugend groRen Pool von TRACED-
POINT-Strukturen an:

TRACEDPOINT
tracedPointPool[X * Y];
TRACEDPOINT *traceHash[X * Y];
TRACEDPOINT *pool =
tracePointPool;

Die folgende Methode ruft die rekursive
Raytracing-Funktion auf und speichert
die entsprechenden Informationen pro
Pixel:

void evaluate(int x, inty)

into=x+y*XRES;

if (traceHash[0])
return;

/I new entry
TRACEDPOINT *n = pool++;

/I Strahl mit Ursprung+Richtung
RAY ray = ..,;

raytrace(&ray, n, 0, X, y);

traceHash[o] =n;

}

Damit tasten Sie den Bildschirm fur je-
den Block einmal ab:
for (y=0; y<YRES;
y += BLOCKSIZE)
for (x=0;
xflag == p2->flag &&
p2->flag == p3->flag &&
p3->flag == p4->flag))

/I Block zum Zeichnen markieren
return;

float test = -1.0f;

if (SIR(test) <0)// true
Alternativ kénnen Sie bei einem Vorzei-
chentest mit einer AND-Verknupfung di-
rekt das Vorzeichenbit testen:

if (IR(test)

& 0x80000000) // true

Mit diesem Trick bestimmen Sie auch den
Absolutwert eines Floats:

IR(test) =

IR(test) & Ox7fffffff;

Ahnlich vergleichen Sie zwei Floating-
Point-Werte. Sofern einer oder beide
Werte groRer Null sind, vergleichen Sie

sie per Integer-Reprasentation:
float a, b;
if (a<b) oderif
(IR@) <IR(b))

2/2003 PC Magazin 191

PC UNDERGROUND
PRAXIS

}
U32 hSize =size > 1;

/I einen TRACEDPOINT dazwischen
/I bestimmen (durch Raytracing
/I oder Interpolation)
if (pl->flag != p2->flag)
evaluate(x + hSize, y); else
interpolate(p1, p2,
X + hSize, y);

/I selbiges fir p2-p4, p3-p4
/I und p1-p3 Kante !

/I Mittelpunkt durch Raytracing
evaluate(x + hSize,y + hSize);

/I rekursiv auf Sub-Bldcke
traceBlock(x, y, hSize);
traceBlock(x+ hSize, y, hSize);
traceBlock(x,y + hSize,hSize);
traceBlock

(x+hSize, y+hSize,hSize);

}

Im obigen Code tauchte eine neue
Funktion auf: Alternativ zu evaluate(...)
gibt es interpolate(...). Diese Funktion
erzeugt aus zwei TRACEDPOINT-
Strukturen eine neue Struktur fUr gege-

s

DER ZWEITE UNTERTEILUNGSSCHRITT re-
sultiert in mehreren fertigen Quadraten.

bene Koordinaten durch Interpolation.
Des Sinn dahinter ist, weitere Raytra-
cing-Berechnungen einzusparen. Die
néachsten vier Bilder verdeutlichen dies.

Dunklere Pixel wurde durch Raytra-
cing berechnet, hellere durch Interpola-
tion, was viel Rechenzeit spart:

void interpolate(TRACEDPOINT
*s1,
TRACEDPOINT *s2,int xd,int yd)

{
into =xd + yd * XRES;

if (traceHash[01])
return;

/I neuer TRACEDPOINT
TRACEDPOINT *dst = pool ++;

dst->flag = s1->flag;
dst->lighting =
(s1->lighting+s2-
>lighting)*0.5;

192 PC Magazin 2,/2003

traceHash[o] = dst;

}

Die raytrace-Funktion erledigt das
komplette rekursive Raytracing. Sie fin-
den den vollstdndigen dokumentierten
Sourcecode auf der Heft-CD. Wichtig
bei Echtzeit-Raytracing ist, dass Sie kei-
ne Berechnungen unnétig mehrfach aus-
fuhren und zeitaufwéndige Operatio-
nen, wie Vektornormalisierung oder
Normalenbestimmung, erst berechnen,
wenn sie benétigt werden. Da es darum
geht, Rechenzeit zu sparen und nicht
Speicherplatz, ist es sinnvoll, spezielle
Routinen beispielsweise fur Schatten-
strahlen oder Raytracing bei Rekursi-
onstiefe 0 (also mit Primérstrahlen) zu
schreiben. Diese Aktion verschlingt ei-
nen grof3en Teil der Rechenleistung.
Hier setzt die First Hit Optimization
an. Einige Berechnungen wie die
Schnittpunktberechnung mit Kugeln
lassen sich vereinfachen, wenn alle
Strahlen vom selben Ursprung — in die-
sem Fall der Betrachterposition — ausge-

DIE FINALE UNTERTEILUNG des 8x8-
Blocks: Statt 64 Raytracing-Berechnungen
reichten 25 mit 18 Interpolationen.

hen. Solche konstanten Faktoren oder
Vektoren berechnen Sie fiir jedes Objekt
der Szene nach einer Anderung der Be-
trachterparameter und verwenden diese
bei der Schnittpunktberechnung mit
Primérstrahlen. Ein einfaches Beispiel
fir solche Konstanten ist der Vektor
vom Betrachter zu einem Kugelmittel-
punkt und dessen Lange.

Eine weitere sehr sinnvolle Optimie-
rung fur den First Hit Case sehen Sie im
néchsten Bild. Sie kbnnen fur die mei-
sten geometrischen Primitive, wie Ku-

gel, Kegel oder Quader eine 2D-Boun-
ding-Box berechnen. Das ist ein Recht-
eck auf dem Bildschirm (begrenzt durch
die linke obere und rechte untere Ecke),
das den Bereich mdglichst eng um-
schlief3t, in dem ein Objekt zu sehen ist.
Bevor Sie also fir einen Pixel und ein
Objekt einen Schnittpunkt testen, pri-
fen Sie, ob der Pixel innerhalb der
Bounding Box liegt.

Der Raytracing Code befindet sich in
der Sourcecode-Datei raytrace.cpp. Die
geometrischen Primitive sind von der
Klasse RTObject (RTObiject.h) abgelei-
tet. Ihre optimierten Schnittpunkt-, Bo-
unding-Box-Berechnungen und Vorbe-
rechnungsroutinen befinden sich in RT-
Plane.cpp/h, RTSphere.cpp/h und in
RTBox.cpp/h.

Beim Shadow Cache handelt es sich um
eine sehr einfache Optimierung. Sehr
aufwandig sind beim Raytracing die
Schattentests, denn fir jeden Schnitt-
punkt mit einer Oberflache missen Sie
die Anzahl der Objekte mit der Anzahl
der Lichtquellen multiplizieren. Dies
kdnnen Sie etwas optimieren, weil nicht
interessant ist, welches Objekt getroffen
wird, sondern nur, ob irgendeins die
Lichtquelle verdeckt.

Aber es geht noch besser. Der Trick
beim Shadow Cache: Wurde der Schat-
tenstrahl eines zuletzt getroffenen
Oberflachenpunkts zu einer Lichtquelle
von Objekt A abgeblockt, wird beim
néchsten Schattentest dieser Lichtquelle
wieder zuerst Uberpriift, ob Objekt A
den Schattenstrahl schneidet. Fir jede
Lichtquelle speichern Sie einen Zeiger
auf ein Objekt. Bei einem Schattentest
fur diese Lichtquelle testen Sie zuerst, ob
sich der Schattenstrahl mit diesem Ob-
jekt schneidet.

Existiert ein Schnittpunkt, sind Sie mit
nur einer Schnittpunktberechnung fer-
tig. Existiert dieser nicht, mussen Sie die
Strahlen auf Schnittpunkte mit anderen
Objekten untersuchen. Wurde ein ande-
res geschnitten, wird der Shadow-
Cache-Zeiger der Lichtquelle auf dieses
Objekt gesetzt.

Was hat OpenGL mit Raytracing zu
tun? Mit OpenGL koénnen Sie die
Blocke, die Sie durch das Raytracing
bzw. das Unterteilen der Blocke erhal-
ten haben, schnell zeichnen. Das Zeich-
nen kdnnten Sie auch per Software erle-
digen, aber wenn Sie die Vertex-Daten

geschickt generieren, ist die OpenGL-
Variante mit Hardware-Unterstiitzung
deutlich schneller. Als Vertex-Daten
bendtigen Sie zum einen die Eckpunkte
der Blocke, zum anderen die dazu-
gehdrigen Farbwerte. Fir das Rendering
verwenden Sie am besten die OpenGL
Vertex und Color Arrays und zeichnen
mit glDrawElements(...). Die Daten um-
fassen dann je zwei Integer-Werte als
Koordinaten und zwei Float-Werte fir
die Farbinformation pro Eckpunkt:
U32 *pVertexArray =
new U32[XRES*YRES*2 J;

VERTEX3D *pColorArray =
new VERTEX3D]...];

Jetzt erweitern Sie die evaluate(...)- und
interpolate(...)-Funktion so, dass immer,
wenn eine neue TRACEDPOINT-
Struktur angelegt wird, ein neuer Vertex
an die obigen Listen angehangt wird:

pVertexArray
[nVertices*2+0]=x;
pVertexArray
[nVertices*2+1]=y;
pColorArray
[nVertices] = n->lighting;

AuBerdem miussen Sie fur jede Bild-
schirmkoordinate den Index des dazu-
gehorigen Eckpunkts wissen. Dazu ver-
wenden Sie ein weiteres Array:

Il init

U32 *indexTable =

new U32[XRES * YRES J;
/l'in evaluate und interpolate:

i.ﬁ.dexTabIe[0] =nVertices;

nVertices++;

Jetzt gilt es noch, die
Indizes zu generieren,
die Sie fUr das Rende-
ring bendtigen. Je vier
Indizes stellen die
Eckpunkte eines
Blocks dar. Diese In-
dizes generieren Sie in
der traceBlock-Funk-
tion. Im obigen
Code-Auszug dieser
Funktion befindet
sich bereits der Kom-
mentar, der die ent-
sprechende Stelle
markiert. Hier spei-
chern Sie die vier In-
dizes, die Sie fur jeden
der Eckpunkte aus
der indexTable lesen.
Sie speichern die Fol-
ge der Indizes in ei-
nem separaten Array,
um alle Blécke mit ei-
nem OpenGL-Funk-
tionsaufruf zu zeich-
nen.

U32 nBlockindex =
0;
U32*pBlockindex=
new U32
[XRES*YRES*4];

PC UNDERGROUND

PRAXIS

DAS BEISPIELPROGRAMM zeigt Primitive wie Quader und Ku-
geln im besten Licht.

pBlockindex[
nBlockindex ++]

indexTable[ofs1

5

pBlockindex|
nBlockindex ++] =
indexTable[ofs2];

pBlockindex[
nBlockindex ++] =
indexTable[ofs4];

pBlockindex[
nBlockindex ++] =
indexTable[ofs3];
Damit haben Sie eine
sehr elegante und per-
formante Lésung, um
den OpenGL-Out-
put zu erzeugen. Das
Rendering erfolgt mit
den Aufrufen:

glVertexPointer
(2, GL_INT, 0,

pVertexArray);

glColorPointer

(3, GL_FLOAT, 0,

pColorArray);

MIT 2D BOUNDING BOXES lassen sich viele unnétige Primar-
strahlen und Schnittpunktberechnungen vermeiden.

glEnableClientState
(GL_VERTEX_ARRAY);

PRIMITIVE WIE QUADER erscheinen bei Beleuchtung und mit
Fantasie wie Schluchten im Hochhausdschungel.

glEnableClientState
(GL_COLOR_ARRAY);

glDrawElements(GL_QUADS,
nBlockindex, GL_UNSIGNED_INT,
pBlockindex);

glDisableClientState
(GL_COLOR_ARRAY);

glDisableClientState
(GL_VERTEX_ARRAY);

Der Code, um die Blocke rekursiv zu
teilen und zu zeichnen, befindet sich in
der Datei quadtree.cpp/h. ET

Nahere Informationen zum Thema:
www.dachsbacher.de/pcu
http://www.pouet.net/prod.php?which=5624
http://www.oroboro.com/rafael/project/rtrt
fagtext.html
http://www.geocities.com/jamisbuck/raytra
cing.html

Glassner: ,Introduction to Raytracing“ auf

www.glassner.com/andrew/writing/books/irt.
htm

2/2003 PC Magazin 193

3 B0

