
P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

Trotz der schnell zunehmenden
Leistung moderner 3D-Hard-
ware gibt es immer noch zahlrei-

che Verfechter des Raytracings. Exper-
ten arbeiten an Raytracing-Hardware,
wobei aus dem Hochschulbereich wich-
tige Impulse kommen: http://graphics.
cs.uni-sb.de/RTRT/.

Hierbei werden Dreiecke mit Multi-
prozessor-Rechnern oder Rechen-
Clustern dargestellt. Die Vorteile beim
Raytracing liegen im einfachen Algo-
rithmus, in der Beherrschbarkeit von
sehr großen 3D-Szenen mit mehreren
hundert Millionen Dreiecken und in der
vergleichsweise leichten Programmie-
rung von Oberflächen-Shadern: Damit
lassen sich Spiegelungen, Transparenz
und Schatteneffekte darstellen. In die-
sem Artikel lernen Sie die Methoden und
Techniken kennen, um auf Ihrem Com-
puter Raytracing-Szenen mit klassi-
schen geometrischen Primitiven wie
Ebene, Kugeln und Zylinder zum Leben
zu erwecken.

Der klassische Raytracing-Algorith-
mus ist rekursiver Natur. Er beginnt da-
mit, Strahlen von der Betrachterposition

durch den Bildschirm zu schießen, um
den Farbwert des Lichts, das aus dieser
Richtung zum Betrachter gelangt, zu be-
stimmen.

Entlang dieser Halbgeraden berech-
nen Sie die Schnittpunkte mit allen Ob-
jekten der Szene und wählen den nächst-
liegenden Schnittpunkt zum Betrachter
aus. Für einen getroffenen Oberflächen-
punkt berechnen Sie eine lokale Be-
leuchtung wie nach dem Phong-Modell.

Lichtquellen der Sze-
ne, die andere Objek-
te verdecken können,
sowie Materialeigen-
schaften beeinflussen
die Berechnung.
Wenn die Oberfläche
spiegelnde Eigen-
schaften besitzt oder
teilweise transparent
ist, ruft sich der
Raytracing-Algorith-
mus rekursiv auf, um
den Farbbeitrag die-
ser Lichtstrahlen zu
berechnen.

Der Vorteil des Raytracings liegt da-
rin, dass die Beleuch-
tungsberechnung und
die Spiegelungs- und
Transparenzeffekte
frei programmierbar
sind. Damit erreichen
Sie Effekte wie das
Bumpmapping mit
weniger Aufwand als
bei 3D-Grafikkarten.

Wie berechnen Sie
die Strahlen, die Sie in
die 3D-Szene schie-
ßen? Zunächst defi-
nieren Sie eine virtu-
elle Kamera durch ih-
re Position (pos), den
Punkt, auf den sie
blickt (to), den Up-

Vektor (up) und den Öffnungswinkel
(fov). Damit können Sie die Sichtpyra-
mide aus dem ersten Bild aufspannen.
Die benötigten Vektoren z, right und up
berechnen Sie mit

z = to - from;
right = z x up;
up = z x right;

x ist das Kreuzprodukt. Die Vektoren
werden anschließend normalisiert, und
right- und up-Vektor werden noch mit
tan(FOV) bzw. tan(FOV/aspectRatio)
skaliert. Ein Strahl vom Betrachter in die
3D-Szene durch den Pixel mit den Ko-
ordinaten (x,y) besitzt den Startpunkt
pos und die Richtung dir. Mit width und
height bezeichnen Sie die Größe des
Bildschirms:

dir = z + right *
(2 * x / width - 1.0)
+ up * (2 * y / height - 1.0);

Den Code für die virtuelle Kamera fin-
den Sie in der Datei RTCamera.h auf der
Heft-CD. Dort befindet sich auch eine
Routine, um die 2D-Position eines
Punkts im Raum zu berechnen. Diese ist
sehr sinnvoll, weil Sie damit 2D-Boun-
ding-Boxes bestimmen.

190 PC Magazin 2/2003

Echtzeit-Raytracing, Teil 1

Im Strahlenkranz
Mit der Rechenleistung heutiger Hardware lässt sich Raytracing in Echtzeit
durchführen. Wir zeigen Ihnen die Techniken und Tricks. Setzen Sie Grafik-
Hardware mit OpenGL richtig ein.

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

VOM BETRACHTER AUS wird durch jeden Pixel des Bildschirms
ein Strahl geschossen.

PRIMÄRSTRAHLEN (BLAU) reflektieren (rot) an Objekten: Auch
Schattentests (gelb) sind Schnittpunktberechnungen.

P C U N D E R G R O U N D
P R A X I S

Wenn Sie eine Auflösung von 640 x
480 Pixeln in einer Szene mit 20 Objek-
ten verwenden und durch jeden Pixel des
Bildschirms einen Strahl schießen, be-
stimmen Sie mit 640*480*20=6144000
Schnittpunktberechnungen nur die zu-
erst getroffenen Oberflächen. Diese
Schnittpunktberechnungen der Primär-
strahlen lassen sich mehrfach optimie-
ren. Sie können die Zahlen der benötig-
ten Strahlen reduzieren, und Sie können
die Schnittpunktberechnungen ver-
bessern.

■ Screen Space Quadtree
Der benötigte Rechenaufwand hängt
von der Auflösung des Bildes ab. Nur
können Sie die Auflösung nicht beliebig

verschlechtern, wenn eine bestimmte
Darstellungsqualität erhalten bleiben
soll. Aber Sie können Bereiche des Bilds,
in denen kein Objekt oder dieselbe
Oberfläche zu sehen ist, gröber abtasten.

Das einfache Prinzip: Beginnen Sie
damit, für jeden Block von 8-x-8-Pixeln
(oder einer anderen initialen Größe) ei-
nen Strahl zu berechnen. Anschließend
können Sie feststellen, ob dieser Block
eine feinere Abtastung – also mehr be-
rechnete Strahlen – benötigt oder ob die
Information ausreicht, um interpolierte
Farbwerte zu berechnen. Wenn das der
Fall ist, werden die Farbwerte der Ecken
des 8-x-8-Blocks interpoliert und keine
weiteren Strahlen mehr berechnet.

Jetzt müssen Sie nur eine Lösung fin-
den, damit Sie nicht dieselben Strahlen
mehrmals berechnen wie bei der Unter-
teilung. Weiterhin gilt es, passende Me-
thoden der Unterteilung und Interpola-
tion zu entwickeln. Zunächst soll uns die
folgende Struktur genügen, um die In-

formationen eines berechneten Strahls
zu speichern:

typedef struct
{

U32 flag;
COLOR lighting;

}TRACEDPOINT;

Diese Struktur wird für einen Primär-
strahl durch Raytracing ausgefüllt. Außer

dem Farbwert speichern Sie im flag-Wert
die Information, anhand der Sie entschei-
den, ob ein Block weiter unterteilt wird
oder ob die Farbinterpolation genügt.
Darin sind beispielsweise ein Identifier
codiert, der die getroffene Oberfläche re-
präsentiert, sowie die Information, ob
sich der getroffene Oberflächenpunkt im
Schatten einer Lichtquelle befindet. Spä-
ter können Sie diese Struktur erweitern,
beispielsweise um diffuse und spekulare
Farbwerte, Textur-Koordinaten oder
Fogging-Parameter.

Schicken Sie durch jeden Pixel maxi-
mal einen Strahl. Dazu legen Sie eine Ta-
belle mit einem Zeiger für jeden Pixel auf
TRACEDPOINT-Strukturen an.
Wenn noch kein Strahl für einen Pixel
berechnet wird, enthält der entsprechen-
de Eintrag einen NULL-Pointer, sonst
einen Zeiger auf die Struktur mit den be-
rechneten Informationen. Um zu ver-
meiden, dass Sie für jeden Pixel Speicher
anfordern müssen, legen Sie sich einen
genügend großen Pool von TRACED-
POINT-Strukturen an:

TRACEDPOINT
tracedPointPool[X * Y];

TRACEDPOINT *traceHash[X * Y];
TRACEDPOINT *pool =

tracePointPool;

Die folgende Methode ruft die rekursive
Raytracing-Funktion auf und speichert
die entsprechenden Informationen pro
Pixel:

void evaluate(int x, int y)
{

int o = x + y * XRES;

if (traceHash[o])
return;

// new entry
TRACEDPOINT *n = pool++;

// Strahl mit Ursprung+Richtung
RAY ray = ...;

raytrace(&ray, n, 0, x, y);

traceHash[o] = n;
}

Damit tasten Sie den Bildschirm für je-
den Block einmal ab:

for (y=0; y<YRES;
y += BLOCKSIZE)

for (x=0;
xflag == p2->flag &&

p2->flag == p3->flag &&
p3->flag == p4->flag))

{
// Block zum Zeichnen markieren
return; q

2/2003 PC Magazin 191

Wenn Sie den Sourcecode durchsehen,
sehen Sie an einigen Stellen Optimierun-
gen, die die interne Repräsentation der IE-
EE-Float-Variablen ausnutzt. Floats beste-
hen aus 32 Bit, wobei das oberste das Vor-
zeichen-Bit ist. Weiterhin sind 8 Bit für
den Exponenten und 23 Bit für die Man-
tisse reserviert.
Vergleichsoperationen mit Floating-
Point-Werten sind oft langsam. Wenn es
sich z.B. um einen Vorzeichentest handelt,
können Sie auf die Variable als Integer-
Wert zugreifen und stattdessen mit der
Integer-Pipeline den Vergleich durch-
führen. Dazu das Makro:

#define SIR(x) ((signed int&)x)
#define IR(x) ((unsigned int&)x)

float test = -1.0f;
if (SIR(test) < 0) // true

Alternativ können Sie bei einem Vorzei-
chentest mit einer AND-Verknüpfung di-
rekt das Vorzeichenbit testen:

if (IR(test)
& 0x80000000) // true

Mit diesem Trick bestimmen Sie auch den
Absolutwert eines Floats:

IR(test) =
IR(test) & 0x7fffffff;

Ähnlich vergleichen Sie zwei Floating-
Point-Werte. Sofern einer oder beide
Werte größer Null sind, vergleichen Sie
sie per Integer-Repräsentation:

float a, b;
if (a < b) oder if

(IR(a) < IR(b))

FLOATING POINT TRICKS

ZUERST BERECHNEN SIE einen Strahl pro
8x8-Block: Rot zeigt Objekt 1 getroffen,
grün Objekt 2.

EIN ERSTER UNTERTEILUNGSSCHRITT
grenzt die Grenze ab, heller gefärbte Pixel
sind durch Interpolation statt Raytracing
bestimmt.

P C U N D E R G R O U N D
P R A X I S

}

U32 hSize = size > 1;

// einen TRACEDPOINT dazwischen
// bestimmen (durch Raytracing
// oder Interpolation)
if (p1->flag != p2->flag)

evaluate(x + hSize, y); else
interpolate(p1, p2,

x + hSize, y);

// selbiges für p2-p4, p3-p4
// und p1-p3 Kante !
...

// Mittelpunkt durch Raytracing
evaluate(x + hSize,y + hSize);

// rekursiv auf Sub-Blöcke
traceBlock(x, y, hSize);
traceBlock(x+ hSize, y, hSize);
traceBlock(x,y + hSize,hSize);
traceBlock

(x+hSize, y+hSize,hSize);
}

Im obigen Code tauchte eine neue
Funktion auf: Alternativ zu evaluate(...)
gibt es interpolate(...). Diese Funktion
erzeugt aus zwei TRACEDPOINT-
Strukturen eine neue Struktur für gege-

bene Koordinaten durch Interpolation.
Des Sinn dahinter ist, weitere Raytra-
cing-Berechnungen einzusparen. Die
nächsten vier Bilder verdeutlichen dies.

Dunklere Pixel wurde durch Raytra-
cing berechnet, hellere durch Interpola-
tion, was viel Rechenzeit spart:

void interpolate(TRACEDPOINT
*s1,

TRACEDPOINT *s2,int xd,int yd)
{

int o = xd + yd * XRES;

if (traceHash[o])
return;

// neuer TRACEDPOINT
TRACEDPOINT *dst = pool ++;

dst->flag = s1->flag;
dst->lighting =

(s1->lighting+s2-
>lighting)*0.5;

traceHash[o] = dst;
}

■ Raytracing und First Hit
Optimization

Die raytrace-Funktion erledigt das
komplette rekursive Raytracing. Sie fin-
den den vollständigen dokumentierten
Sourcecode auf der Heft-CD. Wichtig
bei Echtzeit-Raytracing ist, dass Sie kei-
ne Berechnungen unnötig mehrfach aus-
führen und zeitaufwändige Operatio-
nen, wie Vektornormalisierung oder
Normalenbestimmung, erst berechnen,
wenn sie benötigt werden. Da es darum
geht, Rechenzeit zu sparen und nicht
Speicherplatz, ist es sinnvoll, spezielle
Routinen beispielsweise für Schatten-
strahlen oder Raytracing bei Rekursi-
onstiefe 0 (also mit Primärstrahlen) zu
schreiben. Diese Aktion verschlingt ei-
nen großen Teil der Rechenleistung.

Hier setzt die First Hit Optimization
an. Einige Berechnungen wie die
Schnittpunktberechnung mit Kugeln
lassen sich vereinfachen, wenn alle
Strahlen vom selben Ursprung – in die-
sem Fall der Betrachterposition – ausge-

hen. Solche konstanten Faktoren oder
Vektoren berechnen Sie für jedes Objekt
der Szene nach einer Änderung der Be-
trachterparameter und verwenden diese
bei der Schnittpunktberechnung mit
Primärstrahlen. Ein einfaches Beispiel
für solche Konstanten ist der Vektor
vom Betrachter zu einem Kugelmittel-
punkt und dessen Länge.

Eine weitere sehr sinnvolle Optimie-
rung für den First Hit Case sehen Sie im
nächsten Bild. Sie können für die mei-
sten geometrischen Primitive, wie Ku-

gel, Kegel oder Quader eine 2D-Boun-
ding-Box berechnen. Das ist ein Recht-
eck auf dem Bildschirm (begrenzt durch
die linke obere und rechte untere Ecke),
das den Bereich möglichst eng um-
schließt, in dem ein Objekt zu sehen ist.
Bevor Sie also für einen Pixel und ein
Objekt einen Schnittpunkt testen, prü-
fen Sie, ob der Pixel innerhalb der
Bounding Box liegt.

Der Raytracing Code befindet sich in
der Sourcecode-Datei raytrace.cpp. Die
geometrischen Primitive sind von der
Klasse RTObject (RTObject.h) abgelei-
tet. Ihre optimierten Schnittpunkt-, Bo-
unding-Box-Berechnungen und Vorbe-
rechnungsroutinen befinden sich in RT-
Plane.cpp/h, RTSphere.cpp/h und in
RTBox.cpp/h.

■ Shadow Cache
Beim Shadow Cache handelt es sich um
eine sehr einfache Optimierung. Sehr
aufwändig sind beim Raytracing die
Schattentests, denn für jeden Schnitt-
punkt mit einer Oberfläche müssen Sie
die Anzahl der Objekte mit der Anzahl
der Lichtquellen multiplizieren. Dies
können Sie etwas optimieren, weil nicht
interessant ist, welches Objekt getroffen
wird, sondern nur, ob irgendeins die
Lichtquelle verdeckt.

Aber es geht noch besser. Der Trick
beim Shadow Cache: Wurde der Schat-
tenstrahl eines zuletzt getroffenen
Oberflächenpunkts zu einer Lichtquelle
von Objekt A abgeblockt, wird beim
nächsten Schattentest dieser Lichtquelle
wieder zuerst überprüft, ob Objekt A
den Schattenstrahl schneidet. Für jede
Lichtquelle speichern Sie einen Zeiger
auf ein Objekt. Bei einem Schattentest
für diese Lichtquelle testen Sie zuerst, ob
sich der Schattenstrahl mit diesem Ob-
jekt schneidet.

Existiert ein Schnittpunkt, sind Sie mit
nur einer Schnittpunktberechnung fer-
tig. Existiert dieser nicht, müssen Sie die
Strahlen auf Schnittpunkte mit anderen
Objekten untersuchen. Wurde ein ande-
res geschnitten, wird der Shadow-
Cache-Zeiger der Lichtquelle auf dieses
Objekt gesetzt.

■ OpenGL
Was hat OpenGL mit Raytracing zu
tun? Mit OpenGL können Sie die
Blöcke, die Sie durch das Raytracing
bzw. das Unterteilen der Blöcke erhal-
ten haben, schnell zeichnen. Das Zeich-
nen könnten Sie auch per Software erle-
digen, aber wenn Sie die Vertex-Daten

192 PC Magazin 2/2003

DER ZWEITE UNTERTEILUNGSSCHRITT re-
sultiert in mehreren fertigen Quadraten.

DIE FINALE UNTERTEILUNG des 8x8-
Blocks: Statt 64 Raytracing-Berechnungen
reichten 25 mit 18 Interpolationen.

P C U N D E R G R O U N D
P R A X I S

geschickt generieren, ist die OpenGL-
Variante mit Hardware-Unterstützung
deutlich schneller. Als Vertex-Daten
benötigen Sie zum einen die Eckpunkte
der Blöcke, zum anderen die dazu-
gehörigen Farbwerte. Für das Rendering
verwenden Sie am besten die OpenGL
Vertex und Color Arrays und zeichnen
mit glDrawElements(...). Die Daten um-
fassen dann je zwei Integer-Werte als
Koordinaten und zwei Float-Werte für
die Farbinformation pro Eckpunkt:

U32 *pVertexArray =
new U32[XRES*YRES*2];

VERTEX3D *pColorArray =
new VERTEX3D[...];

Jetzt erweitern Sie die evaluate(...)- und
interpolate(...)-Funktion so, dass immer,
wenn eine neue TRACEDPOINT-
Struktur angelegt wird, ein neuer Vertex
an die obigen Listen angehängt wird:

...
pVertexArray

[nVertices * 2 + 0] = x;
pVertexArray

[nVertices * 2 + 1] = y;
pColorArray

[nVertices] = n->lighting;
...

Außerdem müssen Sie für jede Bild-
schirmkoordinate den Index des dazu-
gehörigen Eckpunkts wissen. Dazu ver-
wenden Sie ein weiteres Array:

// init
U32 *indexTable =

new U32[XRES * YRES];

// in evaluate und interpolate:
...
indexTable[o] = nVertices;

nVertices++;
...

Jetzt gilt es noch, die
Indizes zu generieren,
die Sie für das Rende-
ring benötigen. Je vier
Indizes stellen die
Eckpunkte eines
Blocks dar. Diese In-
dizes generieren Sie in
der traceBlock-Funk-
tion. Im obigen
Code-Auszug dieser
Funktion befindet
sich bereits der Kom-
mentar, der die ent-
sprechende Stelle
markiert. Hier spei-
chern Sie die vier In-
dizes, die Sie für jeden
der Eckpunkte aus
der indexTable lesen.
Sie speichern die Fol-
ge der Indizes in ei-
nem separaten Array,
um alle Blöcke mit ei-
nem OpenGL-Funk-
tionsaufruf zu zeich-
nen.

U32 nBlockIndex =
0;
U32*pBlockIndex=
new U32
[XRES*YRES*4];

...

pBlockIndex[
nBlockIndex ++]
=
indexTable[ofs1

];
pBlockIndex[
nBlockIndex ++] =
indexTable[ofs2];

pBlockIndex[
nBlockIndex ++] =
indexTable[ofs4];

pBlockIndex[
nBlockIndex ++] =
indexTable[ofs3];

Damit haben Sie eine
sehr elegante und per-
formante Lösung, um
den OpenGL-Out-
put zu erzeugen. Das
Rendering erfolgt mit
den Aufrufen:

glVertexPointer
(2, GL_INT, 0,

pVertexArray);
glColorPointer
(3, GL_FLOAT, 0,
pColorArray);

glEnableClientState
(GL_VERTEX_ARRAY);

glEnableClientState
(GL_COLOR_ARRAY);

glDrawElements(GL_QUADS,
nBlockIndex, GL_UNSIGNED_INT,

pBlockIndex);

glDisableClientState
(GL_COLOR_ARRAY);

glDisableClientState
(GL_VERTEX_ARRAY);

Der Code, um die Blöcke rekursiv zu
teilen und zu zeichnen, befindet sich in
der Datei quadtree.cpp/h. s E T

2/2003 PC Magazin 193

Nähere Informationen zum Thema:

www.dachsbacher.de/pcu

http://www.pouet.net/prod.php?which=5624

http://www.oroboro.com/rafael/project/rtrt
faqtext.html

http://www.geocities.com/jamisbuck/raytra
cing.html

Glassner: „Introduction to Raytracing“ auf
www.glassner.com/andrew/writing/books/irt.
htm

MIT 2D BOUNDING BOXES lassen sich viele unnötige Primär-
strahlen und Schnittpunktberechnungen vermeiden.

DAS BEISPIELPROGRAMM zeigt Primitive wie Quader und Ku-
geln im besten Licht.

PRIMITIVE WIE QUADER erscheinen bei Beleuchtung und mit
Fantasie wie Schluchten im Hochhausdschungel.

