
P C U N D E R G R O U N D
P R A X I S

C A R S T E N D A C H S B A C H E R

3D-Engines und Computerspiele
enthalten oft dynamisch erzeugte
(gerenderte) Texturen. Mit dieser

Technik können Sie Shadow Maps,
Feedback-Effekte, Impostors, Dynami-
sche Cube/Environment Maps und vie-
le andere Dinge darstellen.

In dieser Ausgabe lernen Sie P-Buffers
kennen und erfahren, wie Sie diese effizi-
ent einsetzen. Ein P-Buffer ist ein Off
Screen (nicht sichtbarer) Pixel Buffer, der
einen eigenen OpenGL-Kontext besitzt.
Zu einem Kontext gehören alle Einstel-
lungen der OpenGL States wie Matri-
zen, Materialparameter, Lichtquellen
und Texturen.

Der Vorteil eines P-Buffers ist, dass
seine Auflösung und sein Pixel-Format
unabhängig vom aktuellen Darstellungs-

modus sind. Hingegen ist der On-
Screen-Buffer, also der normale Rende-
ring Buffer, an die Bildschirm-Auflö-
sung und -Farbtiefe gebunden.

In einen P-Buffer können Sie genauso
rendern wie in einen On-Screen-Buffer
und dazugehörigen OpenGL-Kontext.
Um P-Buffers zu verwenden, muss Ihre
OpenGL-Implementation die Erweite-
rung WGL_ARB_pixel_format und
WGL_ARB_pbuffer unterstützen.

■ Einen P-Buffer anlegen
Zunächst benötigen Sie die Zeiger auf
die Funktionen, welche die erwähnten
OpenGL Extensions definieren. Diese
Zeiger holen Sie sich mit dem Befehl
wglGetProcAdress während der Initiali-
sierung. Die benötigten Funktionen fin-
den Sie in der Tabelle auf Seite 170.

Nun legen Sie den P-Buffer an. Weil
ein Programm mehrere P-Buffers ein-

setzen kann, definieren Sie eine Klasse,
die Ihnen Arbeit abnimmt und alle
benötigten Informationen speichert:

class CPBuffer
{ private:

HPBUFFERARB hPBuffer;
HDC hDC;
HGLRC hRC;
// Größe
int sizeX, sizeY;
// Texture
GLuint textureID;
// Status
int exists;

public:
CPBuffer(int _x, int _y,

HDC hDC);
~CPBuffer();
int bind();
int release();
int makeCurrent();
GLuint getTexID()

{ return textureID; };
};

Den schwierigsten Teil stellt der Kon-
struktor dar, der den P-Buffer erzeugt.
Zunächst müssen Sie festlegen, welches
Pixel-Format der P-Buffer hat. Bei die-
ser Klasse legen Sie immer einen Buffer
mit folgenden Parametern (mit Null ter-
miniert) an, die Sie beliebig für jeden ein-
zelnen P-Buffer modifizieren können:

hPBuffer = NULL;
sizeX = _x;
sizeY = _y;
int pfAttribute[] =
{

// Verwendung von OpenGL
WGL_SUPPORT_OPENGL_ARB, TRUE,
WGL_DRAW_TO_PBUFFER_ARB, TRUE,

// P-Buffer als Texture
WGL_BIND_TO_TEXTURE_RGBA_ARB,

TRUE,
// RGBA 8888 Format
WGL_RED_BITS_ARB, 8,
WGL_GREEN_BITS_ARB, 8,
WGL_BLUE_BITS_ARB, 8,
WGL_ALPHA_BITS_ARB, 8,
// >16 Bit Z-Buffer
WGL_DEPTH_BITS_ARB, 16,
// kein Double Buffer
WGL_DOUBLE_BUFFER_ARB, FALSE, 0

};

Dann überprüfen Sie, ob ein solches
Format unterstützt wird. Mit wgl-
ChoosePixelFormatARB können Sie ei-
ne Liste von Pixel-Formaten anfordern,
mit der sie die notwendigen Parameter
am besten an Ihren Programmlauf an-
passen. Wollen Sie nur ein Format erhal-
ten, verwenden Sie den Aufruf

int pixelFormat, nFormat = 0;

wglChoosePixelFormatARB(
_hDC, pfAttribute, NULL, 1,
&pixelFormat, &nFormat);

if (nFormat == 0)
kein passendes Format !

Ist das Pixel-Format bestimmt, können
Sie die Verwendung des P-Buffers fest-
legen. Um ihn als dynamische 2D-Tex-

168 PC Magazin 3/2003

Dynamische Texturen mit P-Buffers

Kein Licht
ohne Schatten
Viele Techniken der Computergrafik wie das
Rendering von Schatten oder prozedurale Textu-
ren benötigen dynamisch erzeugte Texturen. Wir
zeigen, wie Sie dynamische Texturen in OpenGL
effizient rendern.

AUF CD
Die Quelltexte sowie die fertig übersetzten

Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

KOPIEREN SIE DEN P-BUFFER-INHALT über den Systemspeicher in eine Textur.

P C U N D E R G R O U N D
P R A X I S

tur zu verwenden, definieren Sie folgen-
des Parameter-Array:

int pbAttribute[] =
{ // Texture Format RGBA 8888

WGL_TEXTURE_FORMAT_ARB,
WGL_TEXTURE_RGBA_ARB,
// 2D Texture
WGL_TEXTURE_TARGET_ARB,
WGL_TEXTURE_2D_ARB, 0 };

und erzeugen den P-Buffer:
hPBuffer = wglCreatePbufferARB(

_hDC, pixelFormat,
sizeX, sizeY, pbAttribute);

hDC = wglGetPbufferDCARB
(hPBuffer);

hRC = wglCreateContext(hDC);
if(!hPBuffer)

P-Buffer nicht ok !

Zuletzt überprüfen Sie, ob der P-Buffer
korrekt angelegt wurde, indem Sie seine
Größe mit der gewünschten – gegeben
durch die Konstruktorparameter _x und
_y – vergleichen:

int __x, __y;
wglQueryPbufferARB(hPBuffer,

WGL_PBUFFER_WIDTH_ARB, &__x);
wglQueryPbufferARB(hPBuffer,

WGL_PBUFFER_HEIGHT_ARB, &__y);
if(!(__x==sizeX && __y==sizeY))

Größe nicht ok !

■ Rendering mit P-Buffers

Um in den P-Buffer rendern zu können,
müssen Sie dessen Kontext als den aktu-
ellen OpenGL Rendering Context
wählen. Zu einem OpenGL-Kontext
gehören alle Einstellungen zu Matrizen,
Kamera, Texturen, Lichtquellen etc.

Die Einstellungen für den P-Buffer
können und müssen unabhängig vom
normalen (sichtbaren) Rendering-Kon-
text gesetzt werden. Befehle, die solche
OpenGL States modifizieren, werden
immer auf den aktuell gewählten Kon-
text angewendet. Den Kontext eines P-

Buffers wählen Sie mit der Methode ma-
keCurrent() der obigen Klasse aus. Die-
se sieht wie folgt aus:

int CPBuffer::makeCurrent()
{ // P-Buffer angelegt ?

if (!exists) return 0;
// Auswählen

if(!wglMakeCurrent(hDC, hRC))
return 0;

return 1; }

Wenn Sie diese Methode aufrufen, be-
ziehen sich alle darauf folgenden
OpenGL-Aufrufe nur noch auf den P-
Buffer. Diesen können Sie mit gl-
Clear(...) löschen und rendern. Um auf
den normalen On-Screen-Kontext q

3/2003 PC Magazin 169

KOPIEREN SIE DEN P-BUFFER-INHALT mit Shared Textures.

P C U N D E R G R O U N D
P R A X I S

zurückzukommen, rufen Sie die wgl-
MakeCurrent-Funktion mit dem De-
vice Context und dem OpenGL Rende-
ring Context auf, den Sie für das norma-
le OpenGL-Fenster erzeugt haben. Die-
se Initialisierung übernimmt der
OpenGL Framework Code für Sie.

■ Dynamische Texturen
Die bisher vorhandene Funktionalität
erlaubt es Ihnen, einen P-Buffer mit be-
liebigem Format anzulegen und etwas

darauf zu rendern. Jetzt können Sie des-
sen Inhalt als Textur für den On-Screen-
Context verwenden. Allerdings müssen
Sie den Inhalt des P-Buffers in den Sys-
temspeicher kopieren und als Textur
wieder dem anderen Kontext übergeben.
Der Ablauf laut der Darstellung des vo-
rigen Bilds entspricht dann dem Code:

// Initialisierung
CPBuffer *pBuffer =

new pBuffer(512, 512, hDC);
pBuffer->makeCurrent();
... // Rendern auf den P-Buffer
// kopieren des P-Buffer Inhalts
GLubyte data[512*512*4];
glReadPixels(0, 0, 512, 512,

GL_RGBA, GL_UNSIGNED_BYTE,
data);

// On-Screen Context
wglMakeCurrent(os_hDC, os_hRC);
// Texture generieren & upload
glGenTextures(1, &tID);
glBindTexture

(GL_TEXTURE_2D, tID);
glTexImage2D(GL_TEXTURE_2D, 0,

GL_RGBA, 512, 512, 0, GL_RGBA,
GL_UNSIGNED_BYTE, data);

Diese Vorgehensweise ist nicht sehr
schnell. Mit dem glReadPixels- und dem
glTexImage2D-Befehl kopieren Sie Da-
ten aus dem Speicher der Grafikkarte
und anschließend wieder hinein. Diesen
Aufwand können Sie vermeiden.

Mit OpenGL können Sie die Display
Lists und Texturen für verschiedene
Rendering Contexts gemeinsam nutzen.
Diese Variante gestattet es Ihnen, eine
Textur anzulegen und in diese direkt den
Inhalt des P-Buffers mit glCopyTexSub-
Image2D zu kopieren.

Die Contexts müssen die Texturen
gemeinsam nutzen. So aktivieren Sie
diese:

if (wglShareLists
(os_hDC, pBuffer->hDC))

//ok-> gemeinsame Nutzung

Das Äquivalent zum obigen Code-Aus-
schnitt für dynamische Texturen ist da-
durch vereinfacht und schneller:

// Initialisierung
CPBuffer *pBuffer = ...;
glGenTextures(1, &tID);
glBindTexture

(GL_TEXTURE_2D, tID);
glTexImage2D(GL_TEXTURE_2D, 0,

GL_RGBA, 512, 512, 0, GL_RGBA,
GL_UNSIGNED_BYTE, data);

// P-Buffer füllen
pBuffer->makeCurrent();

// Texture kopieren
glBindTexture

(GL_TEXTURE_2D, tID);
glCopyTexSubImage2D

(GL_TEXTURE_2D,
0, 0, 0, 0, 0, 512, 512);

// On-Screen Context
wglMakeCurrent(os_hDC, os_hRC);

In der obigen Variante ist immer noch
der glCopyTexSubImage2D-Funkti-
onsaufruf enthalten, der den P-Buffer-
Inhalt in eine Textur kopiert.
Doch warum muss er kopiert werden,
schließlich befindet er sich schon im
Speicher der Grafikkarte und könnte
gleich als Textur verwendet werden? Die
Antwort: Er muss nichts kopiert werden,
sofern Ihre Grafikkarte die Erweiterung
WGL_ARB_render_texture unterstützt.

Die P-Buffer-Klasse enthält noch
zwei nicht spezifizierte Methoden, die
genau für diesen Zweck gedacht sind. Es
ist nämlich möglich, den P-Buffer an ei-
ne Textur eines anderen Kontexts zu
binden. Das bedeutet, der Inhalt der
Textur muss nicht vom Systemspeicher
oder einem OpenGL-Kontext kopiert
werden, sondern ist automatisch der In-
halt des P-Buffers.

Das Anbinden erfolgt mit der bind()-
Methode:

int CPBuffer::bind()
{ if (!exists) return 0;

if(!wglBindTexImageARB(
hPBuffer,
WGL_FRONT_LEFT_ARB))

return 0;
return 1; }

Genauso müssen Sie die Verbindung ei-
ner Textur wieder aufheben können,
weil Sie sonst den Inhalt des P-Buffers
nicht weiter modifizieren können:

int CPBuffer::release()
{ if (!exists) return 0;

if(!wglReleaseTexImageARB(
hPBuffer,
WGL_FRONT_LEFT_ARB))

return 0;
return 1,

}

Mit diesen Methoden sieht die Rende-
ring-Schleife nun folgendermaßen aus:

// Initialisierung
CPBuffer *pBuffer = ...;
glGenTextures(1, &tID);
glBindTexture

(GL_TEXTURE_2D, tID);
glTexImage2D(GL_TEXTURE_2D, 0,

GL_RGBA, 512, 512, 0, GL_RGBA,
GL_UNSIGNED_BYTE, data);

// P-Buffer füllen
pBuffer->makeCurrent();
// Texture kopieren
glBindTexture

(GL_TEXTURE_2D, tID);
pBuffer->bind();
// On-Screen Context
wglMakeCurrent(os_hDC, os_hRC);
//Zeichen: P-Buffer als Textur
pBuffer->release();

170 PC Magazin 3/2003

DER HELLIGKEITSVERLAUF einer Punkt-
lichtquelle

EINE SHADOW MAP für einen Würfel

FUNKTIONEN VON WGL_ARB_PIXEL_FORMAT UND
WGL_ARB_PBUFFER

Funktion Erläuterung
wglChoosePixelFormatARB Abfrage/Auswahl eines Pixel-Formats
wglCreatePbufferARB Erzeugen eines Pixel-Buffers, liefert Handle zurück
wglGetPbufferDCARB Erzeugt ein Device Context für einen P-Buffer
wglReleasePbufferDCARB Gibt obigen Device Context wieder frei
wglDestroyPbufferARB Zerstört P-Buffer
wglQueryPbufferARB Abfrage von Breite/Höhe des P-Buffers und ob der P-Buffer

nach einer Änderung der Bildschirmauflösung noch existiert

P C U N D E R G R O U N D
P R A X I S

■ Mipmapping

Um Aliasing-Effekte für klein darge-
stellte Texturen zu vermeiden, verwen-
den Sie Mipmaps, also verkleinerte Ab-
bilder von Texturen. Für Ihre statischen
Texturen können Sie diese im Normal-
fall selbst erzeugen und an OpenGL
übergeben, oder Sie gebrauchen glu-
Build2DMipmaps(...) anstelle von gl-
TexImage2D(...).

Beide Varianten sind allerdings nicht
so effizient wie die der Grafik-Hard-
ware. Wenn diese die Erweiterung
SGIS_generate_mipmap unterstützt,
können Sie Mipmap-Stufen von Textu-
ren dynamisch erzeugen lassen. Eine sol-
che Textur legen Sie folgendermaßen an:

glGenTextures(1, &tID);
glBindTexture

(GL_TEXTURE_2D, tID);
// Texture Filter
glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_NEAREST);

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER,

GL_LINEAR);
// Mipmap Generierung ein !
glTexParameteri(GL_TEXTURE_2D,

GL_GENERATE_MIPMAP_SGIS,
GL_TRUE);

glTexImage2D(GL_TEXTURE_2D, 0,
GL_RGBA, 512, 512, 0, GL_RGBA,

GL_UNSIGNED_BYTE, data);

Dieser Weg steht Ihnen sogar bei einem
dynamisch gebundenen P-Buffer offen.
Nachdem Sie Ihre Textur entsprechend
programmiert haben, müssen Sie bei der
Anlage des P-Buffers vorsorglich ausrei-
chend Speicher für die Mipmaps reser-
vieren. Dazu erweitern Sie die pbAttri-
bute-Parameterliste (vor der Nulltermi-
nierung) um das folgenden Attribut:

WGL_MIPMAP_TEXTURE_ARB,
GL_TRUE

P-Buffers müssen sich mit dem Frame
Buffer, Texturen und Display Lists den
Speicher der Grafikkarte teilen. Deshalb
sollten Sie sich bei Texturen mit zu üp-
pig dimensionierten Auflösungen und
Farbtiefen zurückhalten. Andernfalls
begrenzen Sie Ihre Render-Performance
rapide. Oft genügt ein einziger P-Buffer,
den Sie mehrfach pro Renderpass ver-
wenden. Unter Umständen benötigen
Sie für den P-Buffer gar keinen zu-
gehörigen Z-Buffer und können so wei-
teren Speicher sparen.

■ Beispiel für P-Buffers
Setzen Sie dynamische Texturen ein, um
Schatten darzustellen. Aus der PC-Un-
derground-Serie kennen Sie schon eini-
ge Schatten-Rendering-Techniken.

Hier lernen Sie eine einfache Shadow-
Map-Technik und deren Umsetzung
mit P-Buffers kennen. Einfach bedeutet
in diesem Fall, dass Objekte sich nicht
selbst beschatten können und dass der
Schatten eines Objekts (der auf alle an-
deren Objekte der Szene geworfen wird)
in einer Textur gespeichert ist.

Dazu legen Sie einen P-Buffer mit der
oben vorgestellten Klasse an. Wenn Sie
die Performance steigern wollen, kön-
nen Sie sogar den Z-Buffer weglassen.

Die Lichtquelle ist durch ihre Position
und die Lichtrichtung gegeben bzw.
durch einen Punkt im Raum, in dessen
Richtung sie scheint. Um den Schatten
eines Objekts bezüglich dieser Punkt-
lichtquelle darzustellen, benötigen Sie
diesen in Form einer Textur. Setzen Sie
dazu die Kamera des P-Buffer-Kontexts
auf die Position der Lichtquelle und der
entsprechenden Richtung, und erzeugen
Sie eine projektive Abbildung in der
Projection Matrix:

pBuffer->makeCurrent();
// Transformation Lichtquelle
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
gluPerspective(80.0f, 1.0f,

1.0f, 500.0f);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
gluLookAt(lightPosition[0],
lightPosition[1],
lightPosition[2], 0, 0, 0,

0, 1, 0);

Wenn Ihre Lichtquelle einen Hellig-
keitsverlauf im Lichtkegel besitzen soll,
können Sie diesen in einer Textur wie im
Bild oben angeben.

Zeichnen Sie diesen Helligkeitsverlauf
zunächst gestreckt über den P-Buffer.
Anschließend färben Sie das Schatten
werfende Objekt schwarz. Dadurch er-

halten Sie die Shadow Map des Objekts,
welches Sie im Beispiel des nächsten Bil-
des betrachten können.

Beim Rendering des eigentlichen Bil-
des im On-Screen Buffer projizieren Sie
die Shadow Map auf alle Schatten emp-
fangenden Objekte der Szene. Zunächst
setzen Sie die Kameraparameter:

wglMakeCurrent
(os_hDC, os_hRC);

// normale Kameratransformation
...
glBindTexture(GL_TEXTURE_2D,
pBuffer->getTexID());
pBuffer->bind();

Anschließend verwenden Sie die
OpenGL-Textur-Koordinatengenerie-
rung. Diese berechnet für Sie aus den
Vertexkoordinaten der Objekte die Tex-
turkoordinaten bezüglich der Shadow
Map. Im ersten Schritt reichen Sie die
Weltkoordinaten mit glTexGen*(...)-
Befehlen direkt als Texturkoordinaten
durch. In der Textur-Matrix befinden
sich die Transformation und Projektion
der Koordinaten, die identisch zu den
Lichtquellen-Transformationen sind:

float genS[]=
{ 1.0, 0.0, 0.0, 0.0 };

float genT[]=
{ 0.0, 1.0, 0.0, 0.0 };

float genR[]=
{ 0.0, 0.0, 1.0, 0.0 };

float genQ[]=
{ 0.0, 0.0, 0.0, 1.0 };

// analog für T, R, Q (HEFT-CD)

Jetzt rendern Sie die Schatten empfan-
genden Objekte mit den folgenden Tex-

tur-Parametern:

glTexParameteri(
GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);

//...
glColor4ub(255,
255, 255, 255);
renderShadowRecei-
ver();

Zum Abschluss
zeichnen Sie noch das
Schatten werfende
Objekt und erhalten
ein Resultat, wie Sie es
im Bild sehen.

Die P-Buffer-Klas-
se gestattet also nicht
nur einfaches Hand-

ling verschiedener RenderTargets, son-
dern bietet auch einen sehr performan-
ten Zugang, dynamische Texturen zu er-
zeugen. s E T

3/2003 PC Magazin 171

Weiterführende Websites

www.dachsbacher.de/pcu

www.nvidia.com

UNSER BEISPIELPROGRAMM mit Shadow Maps in P-Buffers

