PC UNDERGROUND

PRAXIS

Dynamische Texturen mit P-Buffers o |

ohne Schatten

Viele

wie das

Rendering von Schatten oder prozedurale Textu-
ren bendtigen dynamisch erzeugte Texturen. Wir
zeigen, wie Sie dynamische Texturen in OpenGL

effizient rendern.

CARSTEN DACHSBACHER

enthalten oft dynamisch erzeugte

(gerenderte) Texturen. Mit dieser
Technik kdnnen Sie Shadow Maps,
Feedback-Effekte, Impostors, Dynami-
sche Cube/Environment Maps und vie-
le andere Dinge darstellen.

In dieser Ausgabe lernen Sie P-Buffers
kennen und erfahren, wie Sie diese effizi-
ent einsetzen. Ein P-Buffer ist ein Off
Screen (nicht sichtbarer) Pixel Buffer, der
einen eigenen OpenGL-Kontext besitzt.
Zu einem Kontext gehoren alle Einstel-
lungen der OpenGL States wie Matri-
zen, Materialparameter, Lichtquellen
und Texturen.

Der Vorteil eines P-Buffers ist, dass
seine Aufldsung und sein Pixel-Format
unabhéngig vom aktuellen Darstellungs-

3 D-Engines und Computerspiele

modus sind. Hingegen ist der On-
Screen-Buffer, also der normale Rende-
ring Buffer, an die Bildschirm-Auflo-
sung und -Farbtiefe gebunden.

In einen P-Buffer kbnnen Sie genauso
rendern wie in einen On-Screen-Buffer
und dazugehorigen OpenGL-Kontext.
Um P-Buffers zu verwenden, muss lhre
OpenGL-Implementation die Erweite-
rung WGL_ARB_pixel_format und
WGL_ARB_pbuffer unterstttzen.

Zunachst bendtigen Sie die Zeiger auf
die Funktionen, welche die erwahnten
OpenGL Extensions definieren. Diese
Zeiger holen Sie sich mit dem Befehl
wglGetProcAdress wahrend der Initiali-
sierung. Die benétigten Funktionen fin-
den Sie in der Tabelle auf Seite 170.
Nun legen Sie den P-Buffer an. Weil
ein Programm mehrere P-Buffers ein-

Grafikkarten Speicher

2. Schritt:
On-Screen Context
aktiv

Off-Screen Rendering
P-Buffer Context
1. Schritt:

P-Buffer Context aktiv

Hauptspeicher
KOPIEREN SIE DEN P-BUFFER-INHALT Uber den Systemspeicher in eine Textur.

168 PC Magazin 3/2003

Die Quelltexte sowie die fertig tbersetzten
Routinen finden Sie im Verzeichnis Heft Add-
ons/Programmierung/PC Underground.

setzen kann, definieren Sie eine Klasse,
die lhnen Arbeit abnimmt und alle
bendtigten Informationen speichert:

class CPBuffer
{ private:
HPBUFFERARB hPBuffer;
HDC hDC;
HGLRC hRC;
/I Gréf3e
int sizeX, sizeY;
/I Texture
GLuint
/I Status
int exists;
public:
CPBuffer(int _x, int _y,
HDC hDC);
~CPBuffer();
int  bind();
int  release();
int  makeCurrent();
GLuint getTexID()
{ return texturelD; };

texturelD;

k
Den schwierigsten Teil stellt der Kon-
struktor dar, der den P-Buffer erzeugt.
Zunéchst mussen Sie festlegen, welches
Pixel-Format der P-Buffer hat. Bei die-
ser Klasse legen Sie immer einen Buffer
mit folgenden Parametern (mit Null ter-
miniert) an, die Sie beliebig fur jeden ein-
zelnen P-Buffer modifizieren kdnnen:

hPBuffer = NULL;

sizeX =_x;
sizeY =_y;

int pfAttribute[] =
{

/I Verwendung von OpenGL

WGL_SUPPORT_OPENGL_ARB, TRUE,

WGL_DRAW_TO_PBUFFER_ARB, TRUE,
/I P-Buffer als Texture
WGL_BIND_TO_TEXTURE_RGBA_ARB,

TRUE,

/I RGBA 8888 Format

WGL_RED_BITS_ARB, 8,

WGL_GREEN_BITS_ARB, 8,

WGL_BLUE_BITS_ARB, 8,

WGL_ALPHA_BITS_ARB, 8,

/I >16 Bit Z-Buffer

WGL_DEPTH_BITS_ARB, 16,

/I kein Double Buffer

WGL_DOUBLE_BUFFER_ARB, FALSE, 0

}

Dann Uberprifen Sie, ob ein solches
Format unterstiitzt wird. Mit wgl-
ChoosePixelFormatARB konnen Sie ei-
ne Liste von Pixel-Formaten anfordern,
mit der sie die notwendigen Parameter
am besten an lhren Programmlauf an-
passen. Wollen Sie nur ein Format erhal-
ten, verwenden Sie den Aufruf

int pixelFormat, nFormat = 0;

wglChoosePixelFormatARB(
_hDC, pfAttribute, NULL, 1,
&pixelFormat, &nFormat );
if (nFormat==0)
kein passendes Format !
Ist das Pixel-Format bestimmt, kdnnen
Sie die Verwendung des P-Buffers fest-

legen. Um ihn als dynamische 2D-Tex-



tur zu verwenden, definieren Sie folgen-
des Parameter-Array:

int pbAttribute[] =

{ Il Texture Format RGBA 8888
WGL_TEXTURE_FORMAT_ARB,
WGL_TEXTURE_RGBA_ARB,
/1 2D Texture
WGL_TEXTURE_TARGET ARB,
WGL_TEXTURE_2D_ARB, 0 };

und erzeugen den P-Buffer:

hPBuffer = wglCreatePbufferARB(
_hDC, pixelFormat,
sizeX, sizeY, pbAttribute );
hDC = wglGetPbufferDCARB
( hPBuffer);
hRC = wglCreateContext( hDC );
if( !hPBuffer )
P-Buffer nicht ok !

Zuletzt Uberprifen Sie, ob der P-Buffer
korrekt angelegt wurde, indem Sie seine
Grofle mit der gewiinschten — gegeben
durch die Konstruktorparameter _x und
_y —vergleichen:

int_x,_y;
wglQueryPbufferARB( hPBuffer,
WGL_PBUFFER_WIDTH_ARB, & X);
wglQueryPbufferARB( hPBuffer,
WGL_PBUFFER_HEIGHT_ARB, & y);
if(1(__x==sizeX && __y==sizeY))
GroRe nicht ok !

PC UNDERGROUND

PRAXIS

Grafikkarten Speicher

KOPIEREN SIE DEN P-BUFFER-INHALT mit Shared Textures.

® Rendering mit P-Buffers

Um in den P-Buffer rendern zu kdnnen,
mussen Sie dessen Kontext als den aktu-
ellen OpenGL Rendering Context
wéhlen. Zu einem OpenGL-Kontext
gehoren alle Einstellungen zu Matrizen,
Kamera, Texturen, Lichtquellen etc.
Die Einstellungen fiir den P-Buffer
kénnen und mdssen unabhdngig vom
normalen (sichtbaren) Rendering-Kon-
text gesetzt werden. Befehle, die solche
OpenGL States modifizieren, werden
immer auf den aktuell gewéhlten Kon-
text angewendet. Den Kontext eines P-

Buffers wahlen Sie mit der Methode ma-
keCurrent() der obigen Klasse aus. Die-
se sieht wie folgt aus:

int CPBuffer::makeCurrent()
{ /I P-Buffer angelegt ?
if (lexists ) return 0;
/I Auswéhlen
if( 'wglMakeCurrent( hDC, hRC))
return O;
return 1; }

Wenn Sie diese Methode aufrufen, be-
ziehen sich alle darauf folgenden
OpenGL-Aufrufe nur noch auf den P-
Buffer. Diesen konnen Sie mit gl-
Clear(...) I6schen und rendern. Um auf
den normalen On-Screen-Kontext ©

372003 PC Magazin 169

X



3o

PC UNDERGROUND

PRAXIS

wglChoosePixelFormatARB Abfrage/Auswahl eines Pixel-Formats
wglCreatePbufferARB Erzeugen eines Pixel-Buffers, liefert Handle zuriick
wglGetPbufferDCARB Erzeugt ein Device Context fur einen P-Buffer
wglReleasePbufferDCARB Gibt obigen Device Context wieder frei
wglDestroyPbufferARB Zerstort P-Buffer

wglQueryPbufferARB Abfrage von Breite/Hohe des P-Buffers und ob der P-Buffer

nach einer Anderung der Bildschirmauflésung noch existiert

zuriickzukommen, rufen Sie die wgl-
MakeCurrent-Funktion mit dem De-
vice Context und dem OpenGL Rende-
ring Context auf, den Sie fuir das norma-
le OpenGL-Fenster erzeugt haben. Die-
se Initialisierung  Ubernimmt  der
OpenGL Framework Code fur Sie.

Die bisher vorhandene Funktionalitat
erlaubt es Ihnen, einen P-Buffer mit be-
liebigem Format anzulegen und etwas

DER HELLIGKEITSVERLAUF einer Punkt-
lichtquelle

darauf zu rendern. Jetzt kdnnen Sie des-
sen Inhalt als Textur fur den On-Screen-
Context verwenden. Allerdings mussen
Sie den Inhalt des P-Buffers in den Sys-
temspeicher kopieren und als Textur
wieder dem anderen Kontext Uibergeben.
Der Ablauf laut der Darstellung des vo-

rigen Bilds entspricht dann dem Code:
/I Initialisierung
CPBuffer *pBuffer =
new pBuffer( 512, 512, hDC);

pBuffer->makeCurrent();

... Il Rendern auf den P-Buffer

Il kopieren des P-Buffer Inhalts

GLubyte data[ 512*512*4 ];

glReadPixels( 0, 0, 512, 512,

GL_RGBA, GL_UNSIGNED_BYTE,

data );

/I On-Screen Context

wglMakeCurrent( os_hDC, os_hRC);

/I Texture generieren & upload

glGenTextures( 1, &tID );

glBindTexture

170 PC Magazin 3/2003

(GL_TEXTURE_2D, tID );

glTeximage2D( GL_TEXTURE_2D, 0,

GL_RGBA, 512, 512, 0, GL_RGBA,
GL_UNSIGNED_BYTE, data );

Diese Vorgehensweise ist nicht sehr
schnell. Mit dem glReadPixels- und dem
glTexImage2D-Befehl kopieren Sie Da-
ten aus dem Speicher der Grafikkarte
und anschlielend wieder hinein. Diesen
Aufwand kénnen Sie vermeiden.

Mit OpenGL kdnnen Sie die Display
Lists und Texturen fur verschiedene
Rendering Contexts gemeinsam nutzen.
Diese Variante gestattet es Ihnen, eine
Textur anzulegen und in diese direkt den
Inhalt des P-Buffers mit glCopy TexSub-
Image2D zu kopieren.

Die Contexts mussen die Texturen
gemeinsam nutzen. So aktivieren Sie
diese:

if (wglShareLists
(os_hDC, pBuffer->hDC ) )
/lok-> gemeinsame Nutzung

Das Aquivalent zum obigen Code-Aus-
schnitt fur dynamische Texturen ist da-
durch vereinfacht und schneller:

EINE SHADOW MAP fur einen Wiirfel

/I Initialisierung
CPBuffer *pBuffer = ...;
glGenTextures( 1, &tID );
glBindTexture
(GL_TEXTURE_2D, tID);

glTeximage2D( GL_TEXTURE_2D, 0,

GL_RGBA, 512, 512, 0, GL_RGBA,

GL_UNSIGNED_BYTE, data );

/I P-Bulffer fillen
pBuffer->makeCurrent();

/I Texture kopieren
glBindTexture
( GL_TEXTURE_2D, tID );

glCopyTexSublmage2D

(GL_TEXTURE_2D,

0,0,0,0,0,512,512);

/I On-Screen Context
wglMakeCurrent( os_hDC, os_hRC);

In der obigen Variante ist immer noch
der  glCopyTexSublmage2D-Funkti-
onsaufruf enthalten, der den P-Buffer-
Inhalt in eine Textur kopiert.
Doch warum muss er kopiert werden,
schlieBlich befindet er sich schon im
Speicher der Grafikkarte und kodnnte
gleich als Textur verwendet werden? Die
Antwort: Er muss nichts kopiert werden,
sofern Ihre Grafikkarte die Erweiterung
WGL_ARB_render_texture unterstitzt.

Die P-Buffer-Klasse enthélt noch
zwei nicht spezifizierte Methoden, die
genau fir diesen Zweck gedacht sind. Es
ist ndmlich méglich, den P-Buffer an ei-
ne Textur eines anderen Kontexts zu
binden. Das bedeutet, der Inhalt der
Textur muss nicht vom Systemspeicher
oder einem OpenGL-Kontext kopiert
werden, sondern ist automatisch der In-
halt des P-Buffers.

Das Anbinden erfolgt mit der bind()-
Methode:

int CPBuffer::bind()
{if (lexists ) return 0;
if( 'wglBindTexlmageARB(
hPBuffer,
WGL_FRONT_LEFT_ARB))
return O;
return 1; }

Genauso mussen Sie die Verbindung ei-
ner Textur wieder aufheben koénnen,
weil Sie sonst den Inhalt des P-Buffers
nicht weiter modifizieren kdnnen:

int CPBuffer::release()
{if ('exists ) return 0;
if( 'wglReleaseTexImageARB(
hPBuffer,
WGL_FRONT_LEFT_ARB))
return O;
return 1,

}

Mit diesen Methoden sieht die Rende-
ring-Schleife nun folgendermafen aus:

/I Initialisierung
CPBuffer *pBuffer = ...;
glGenTextures( 1, &tID );
glBindTexture
(GL_TEXTURE_2D, tID);
glTeximage2D( GL_TEXTURE_2D, 0,
GL_RGBA, 512,512, 0, GL_RGBA,
GL_UNSIGNED_BYTE, data );
/I P-Buffer fillen
pBuffer->makeCurrent();
/I Texture kopieren
glBindTexture
(GL_TEXTURE_2D, tID);
pBuffer->bind();
/I On-Screen Context
wglMakeCurrent( os_hDC, os_hRC);
/IZeichen: P-Buffer als Textur
pBuffer->release();



Um Aliasing-Effekte fir klein darge-
stellte Texturen zu vermeiden, verwen-
den Sie Mipmaps, also verkleinerte Ab-
bilder von Texturen. Fur lhre statischen
Texturen konnen Sie diese im Normal-
fall selbst erzeugen und an OpenGL
Uibergeben, oder Sie gebrauchen glu-
Build2DMipmaps(...) anstelle von gl-
TexImage2D(...).

Beide Varianten sind allerdings nicht
so effizient wie die der Grafik-Hard-
ware. Wenn diese die Erweiterung
SGIS_generate_mipmap  unterstitzt,
koénnen Sie Mipmap-Stufen von Textu-
ren dynamisch erzeugen lassen. Eine sol-
che Textur legen Sie folgendermal3en an:

glGenTextures( 1, &tID );

glBindTexture

(GL_TEXTURE_2D, tID);
/I Texture Filter
glTexParameteri( GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_NEAREST );
glTexParameteri( GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER,
GL_LINEAR );
/I Mipmap Generierung ein !
glTexParameteri( GL_TEXTURE_2D,
GL_GENERATE_MIPMAP_SGIS,
GL_TRUE);
glTeximage2D( GL_TEXTURE_2D, 0,
GL_RGBA, 512, 512, 0, GL_RGBA,
GL_UNSIGNED_BYTE, data );

Dieser Weg steht Ihnen sogar bei einem
dynamisch gebundenen P-Buffer offen.
Nachdem Sie Ihre Textur entsprechend
programmiert haben, mussen Sie bei der
Anlage des P-Buffers vorsorglich ausrei-
chend Speicher fiir die Mipmaps reser-
vieren. Dazu erweitern Sie die pbAttri-
bute-Parameterliste (vor der Nulltermi-
nierung) um das folgenden Attribut:
WGL_MIPMAP_TEXTURE_ARB,
GL_TRUE

P-Buffers mussen sich mit dem Frame
Buffer, Texturen und Display Lists den
Speicher der Grafikkarte teilen. Deshalb
sollten Sie sich bei Texturen mit zu Up-
pig dimensionierten Auflésungen und
Farbtiefen zurtickhalten. Andernfalls
begrenzen Sie Ihre Render-Performance
rapide. Oft genuigt ein einziger P-Buffer,
den Sie mehrfach pro Renderpass ver-
wenden. Unter Umstédnden bendtigen
Sie fur den P-Buffer gar keinen zu-
gehdrigen Z-Buffer und kénnen so wei-
teren Speicher sparen.

Setzen Sie dynamische Texturen ein, um
Schatten darzustellen. Aus der PC-Un-
derground-Serie kennen Sie schon eini-
ge Schatten-Rendering-Techniken.

Hier lernen Sie eine einfache Shadow-
Map-Technik und deren Umsetzung
mit P-Buffers kennen. Einfach bedeutet
in diesem Fall, dass Objekte sich nicht
selbst beschatten kdnnen und dass der
Schatten eines Objekts (der auf alle an-
deren Objekte der Szene geworfen wird)
in einer Textur gespeichert ist.

Dazu legen Sie einen P-Buffer mit der
oben vorgestellten Klasse an. Wenn Sie
die Performance steigern wollen, kén-
nen Sie sogar den Z-Buffer weglassen.

Die Lichtquelle ist durch ihre Position
und die Lichtrichtung gegeben bzw.
durch einen Punkt im Raum, in dessen
Richtung sie scheint. Um den Schatten
eines Objekts beziglich dieser Punkt-
lichtquelle darzustellen, bendtigen Sie
diesen in Form einer Textur. Setzen Sie
dazu die Kamera des P-Buffer-Kontexts
auf die Position der Lichtquelle und der
entsprechenden Richtung, und erzeugen
Sie eine projektive Abbildung in der
Projection Matrix:

pBuffer->makeCurrent();
/I Transformation Lichtquelle
glMatrixMode( GL_PROJECTION );
glPushMatrix();
glLoadldentity();
gluPerspective( 80.0f, 1.0f,
1.0f, 500.0f);

glMatrixMode( GL_MODELVIEW );
glPushMatrix();
glLoadldentity();
gluLookAt(lightPosition[ 0 ],
lightPosition[ 1 ],
lightPosition[ 2], O, O, O,

0,1,0);

PC Underground
OpenGL P-Buffers

{w)(c)2002 . Dachsbacher

UNSER BEISPIELPROGRAMM mit Shadow Maps in P-Buffers

Wenn lhre Lichtquelle einen Hellig-
keitsverlauf im Lichtkegel besitzen soll,
konnen Sie diesen in einer Textur wie im
Bild oben angeben.

Zeichnen Sie diesen Helligkeitsverlauf
zundchst gestreckt tUber den P-Buffer.
AnschlieBend farben Sie das Schatten
werfende Objekt schwarz. Dadurch er-

PC UNDERGROUND
PRAXIS

halten Sie die Shadow Map des Objekts,
welches Sie im Beispiel des nachsten Bil-
des betrachten kdnnen.

Beim Rendering des eigentlichen Bil-
des im On-Screen Buffer projizieren Sie
die Shadow Map auf alle Schatten emp-
fangenden Objekte der Szene. Zundchst
setzen Sie die Kameraparameter:

wglMakeCurrent
(0s_hDC, os_hRC);
/I normale Kameratransformation

gIBindTexture( GL_TEXTURE_2D,
pBuffer->getTexID() );
pBuffer->bind();

AnschlieBend  verwenden Sie die
OpenGL-Textur-Koordinatengenerie-
rung. Diese berechnet fur Sie aus den
Vertexkoordinaten der Objekte die Tex-
turkoordinaten beziglich der Shadow
Map. Im ersten Schritt reichen Sie die
Weltkoordinaten mit glTexGen*(...)-
Befehlen direkt als Texturkoordinaten
durch. In der Textur-Matrix befinden
sich die Transformation und Projektion
der Koordinaten, die identisch zu den
Lichtquellen-Transformationen sind:

float genS[]=
{1.0,0.0,0.0,00}
float genT[]=
{0.0,1.0,0.0,0.0}
float genR[]=
{0.0,0.0,1.0,0.0}
float genQ[]=
{0.0,00,00,1.0}
/I analog fiir T, R, Q (HEFT-CD)
Jetzt rendern Sie die Schatten empfan-
genden Objekte mit den folgenden Tex-

tur-Parametern:

glTexParameteri(
GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE );

/...

glColordub( 255,
255, 255, 255);
renderShadowRecei-
ver();

Zum Abschluss
zeichnen Sie noch das
Schatten  werfende
Objekt und erhalten
ein Resultat, wie Sie es
im Bild sehen.

Die P-Buffer-Klas-
se gestattet also nicht
nur einfaches Hand-
ling verschiedener RenderTargets, son-
dern bietet auch einen sehr performan-
ten Zugang, dynamische Texturen zu er-

zeugen. ET
Weiterfiihrende Websites
www.dachsbacher.de/pcu
www.nvidia.com

3/2003 PC Magazin 171



