212

PC Magazin 4/2003 : www.pc-magazin.de

PROGRAMMIERUNG

PC UNDERGROUND

Mit Geometrie- und Textur-
Verarbeitung erzielen Sie
Bumpmapping-Effekte.
Neueste Grafikkarten verfiigen
tiber programmierbare
Fragment Shaders, um die
Beleuchtung fir jeden Pixel

zu berechnen.

Carsten Dachsbacher

[
Die Attribute fur das
Vertex-Programm

position Vertex-Koordinate
texcoord[0] Textur-Koordinate
texcoord[1] Binormale
texcoord[2] Tangente

normal Normale

Vertex- und Fragment-Programme mit OpenGL

Beleuchtung —
Punkt fur Punkt

Da moderne Grafikkarten frei program-

mierbar sind, lassen sich realistische Be-
leuchtungseffekte in Echtzeit darstellen. Den er-
sten Schritt in dieser Richtung stellen die Ver-
tex-Programme dar. Diese von Direct3D-
Experten auch als Vertex Shaders bezeichnete
Technik fahrte nVidia mit der GeForce-Grafik-
karten-Serie ein. Auf Pixelbasis stehen seit lan-
gerem die Texture Shaders und Register Com-
biners (nVidia) bzw. Pixel/Fragment Shaders
(ATI/Direct3D) zur Verfligung.
Die neueste Grafikkarten-Generation wie ATI
Radeon 9500/9700 und nVidia GeForce FX ist
frei programmierbar auf der Fragment-(Pixel-)

Stufe (also im Rasterisierungsteil der Grafik-Pi-
peline). Sie kénnen in einer Art Assembler-
Sprache programmieren, ahnlich den Vertex-
Programmen, mit einem Hochsprachen-Com-
piler wie nVidias Cg oder der HLSL (High Level
Shading Language) von DirectX9.

In OpenGL sind Hersteller iibergreifende Stan-
dards flr Vertex- und Fragment- Programme
festgelegt worden. Wir berechnen fir jeden
Pixel — statt nur fur jeden Vertex — die Beleuch-
tung (Per-Pixel-Lighting) mit dem vollstandi-
gen Phong- Beleuchtungsmodell und fiihren
Bumpmapping durch. Wer nicht tber die
neueste Grafikkarte verfligt, erfahrt, wie er

Pixel Lighting
~1 mitdem Beispiel-
| programm: Wagen Sie
" den Schritt von der Pra-
' xis der aufregenden
| Ego-Shooter in die Theo-
rie, die diese virtuellen
§ Welten erschafft.

Heft Add-ons/Programmierung/PC Underground

Quelltexte und Routinen > CD 1

ohne Fragment-Programme, nur mit Vertex-
Programmen Bumpmapping-Effekte rendern
kann.

Das Phong-Beleuchtungsmodell

Phong ist das am haufigsten eingesetzte Be-
leuchtungsmodell in der Computergrafik. Es
wurde 1975 von Phong Bui-Toung (fir nicht
perfekte Reflektoren) entwickelt und dient da-
zu, die Farbe eines Oberflachenpunkts zu be-
stimmen.

Dazu benétigen Sie dessen Normale N, den
Vektor zur Lichtquelle L, den Vektor der reflek-
tierten Lichtrichtung R und den Vektor zum
Betrachter V. Die Grafik auf der folgenden Sei-
te verdeutlicht den Zusammenhang der vor-
kommenden Vektoren. Weiterhin flie3en in die
Formel die Farbe der Lichtquelle | und die Ei-
genfarbe der Oberflache O ein. Weitere Ober-
flachenparameter sind das ambiente, diffuse
und spekular reflektierte Licht, gegeben durch
die Koeffizienten k(a), k(d) und k(s). Der Atte-
nuation Faktor f_att gibt die Abnahme der In-
tensitat der Lichtquelle in Abh&ngigkeit zum
Abstand an.

F=k(a)-1-0 + f_att-1-
[k(d)-0-(N dot L) +
gloss-k(s)-(R-V)"n]

Die Formel enthalt Farbvektoren und berech-
net RGB-Komponenten. Der Koeffizient n dient
dazu, Glanzlichter zu modellieren. GréRere
Werte flir n resultieren in kleineren scharferen
Glanzlichtern. Der gloss-Faktor modelliert
UnregelmaéRigkeiten in der spekularen Refle-
xion, um glédnzende und nicht glanzende Stel-
len auf einer metallischen Oberflache dar-
zustellen.

Bumpmapping

Beim Phong-Modell hdngen viele Parameter
entweder von den Oberflacheneigenschaften
wie der Farbe ab oder sind durch die Lage des
Objekts in der Szene relativ zur Lichtquelle und
zum Betrachter bestimmt (wie durch L, R und
V). Sie kdnnen daher nur in die Beleuchtungs-
berechnung eingreifen, indem Sie die Norma-
le verdndern. Genau das geschieht beim
Bumpmapping. Das Verfahren speichert die je-
weilige Oberflachen-Normale, codiert per
RGB-Farbwert in einer Textur, und berechnet
so die Beleuchtung.

Wir setzen voraus, dass Sie die Position der
Lichtquelle im Object Space, also relativ zum
Koordinatensystem, in dem die Object Vertices
definiert sind, bestimmt haben. In einer Textur
fur Ihr 3D-Objekt ist die Normale gespeichert,
die Sie zur Beleuchtungsberechnung verwen-

den. Das heifl’t, jedem Punkt der Oberflache ist
ein eindeutiger (unikater) Texel der Textur zu-
geordnet. Dieser Texel enthélt die Normale in
codierter Form. Er h&ngt von der Beschaffen-
heit der Oberflache ab.

Da diese Methode schwierig umzusetzen ist,
verwenden wir flirs Bumpmapping eine ande-
re Technik, bei der jedem Vertex nicht nur ei-
ne Koordinate, sondern ein Tangent Space
(ein eigenes Koordinatensystem) zugeordnet
wird. Dieses begnigt sich mit den drei Vekto-
ren Tangente, Binormale und Normale.
Wahlen Sie Tangente und Binormale so, dass
sie entsprechend den Vektoren des Textur-
Mappings verlaufen. Solche Tangent Spaces
kdnnen Sie mit 3D-Programmen aufspannen.
Ein Tangent Space muss der Anforderung ge-
nugen, dass die Normale n der Z-Achse ent-
spricht. So berechnen Sie den Tangent Space
fir einen Vertex in Abh&ngigkeit von n:

VECTOR up = { 0.0, 0.0, -1.0 };

// X->Kreuzprodukte bilden
binormal = n X up;
tangente = bi X n;

Fir jeden Vertex speichern Sie die drei Vekto-
ren (in normalisierter Form). Fur das Bump-
mapping wird nun jeder Vektor von der Vertex-
Position zur Lichtquelle, z.B. mit einem Vertex
Programm, in dessen Tangent Space transfor-
miert, was drei Skalarprodukten entspricht:

// Vektor vertex -> lichtquelle
toLight =

lightPosition - vertexPosition;
tangentLight.x =

binormale dot toLight;
tangentLight.y =

tangente dot toLight;
tangentLight.z =

normale dot toLight;

Die drei Komponenten des tangentLight-
Vektors speichern Sie in einer Textur-Koor-
dinaten. Diese und somit der Vektor zur Licht-
quelle wird beim Rendering der Dreiecke zwi-
schen den Eckpunkten interpoliert und steht
fur jeden Pixel zur Verflgung. Allerdings
bewirkt die lineare Interpolation der Kom-

Eine Heightmap: Da-

~ raus erzeugen Sie die
Bumpmap, welche Sie
mit einem vereinfach-
ten mathematischen
Modell gestalten.

Pixel-Phong-Beleuchtung: Gestaltung ohne
Eigenfarbe der Oberflachen

ponenten, dass die L&nge des Vektors nicht
konstant ist.

Firs vollstandige Phong-Beleuchtungsmodell
bendétigen Sie die Richtung zur Kamera im
Tangent Space, die Sie analog berechnen.

Der Vorteil des Tangent Space Bumpmapping
liegt in der Texturierung der Objekte. In der
Bumpmap Texture sind die Normalen codiert,
die fiir eine Flache mit der Normalen (0,0,1)
gliltig sind. Durch die Tangent-Space-Transfor-
mation kdnnen Sie ein beliebiges Mapping die-
ser Textur auf das 3D-Objekt verwenden. Sol-
che Bumpmap-Texturen werden meist aus
Heightmaps erzeugt. Eine Heightmap ist ein
Graustufen-Bitmap, wobei die Graustufe eines
Texels dessen Hohe représentiert. Mit geeigne-
ten Tools wie von nVidia (http://developer.nvi-
dia.com/view.asp?l0=map_generator), kdnnen
Sie daraus eine Bumpmap erzeugen.

Programmierbare Grafik-Pipeline

Um den Tangent Space und die Beleuchtung
zu berechnen, benétigen Sie die OpenGL Ex-
tensions fur die Vertex- bzw. Fragment-Pro-
gramme: GL_ARB_VERTEX_ und
GL_ARB_FRAGMENT_PROGRAM. Die Spezifi-
kationen aller OpenGL Extensions finden Sie
unter http://oss.sgi.com/projects/ogl-sample/
registry/. Beide Erweiterungen nutzen diesel-
be Schnittstelle, um den Assembler Code eines
Program, gespeichert in einem String, zu Uber-
geben und zu nutzen. Die Funktionszeiger la-
den Sie im Beispielprogramm mit dem
wglGetProcAddress(...)-Befehl.

PC Magazin 4/2003 : www.pc-magazin.de

214

PC Magazin 4/2003 : www.pc-magazin.de

PROGRAMMIERUNG

PC UNDERGROUND

N (Normale)

L (Lichtquelle)

R

(Reflexionsvektor)

(View-Vektor)

Vier Vektoren: 1975 hat Phong Bui-Toung sein
Beleuchtungsmodell fir nicht perfekte Reflek-
toren entwickelt.

Als erstes fordern Sie immer einen Identifier
far Ihr Vertex- oder Fragment-Programm an:

GLuint programlD;
glGenProgramsARB(1, &programlD);

Ob es sich hier um ein Vertex- oder Fragment-
Programm handelt, bestimmt bei den folgen-
den Befehlen das Target GL_VERTEX_PRO-
GRAM_ARB oder GL_FRAGMENT_PRO-
GRAM_ARB.

Im né&chsten Schritt erweitern Sie das Pro-
gramm. Sie Ubergeben den String mit dem
Programmcode, den Sie z.B. aus einer Textda-
tei vorher eingelesen haben:

gIBindProgramARB(
GL_VERTEX_PROGRAM_ARB,
programlD);

char *programCode = ,,...%;

glProgramStringARB(
GL_VERTEX_PROGRAM_ARB,
GL_PROGRAM_FORMAT_ASCI1_ARB,
strlen(programCode),
programCode);

Um abzufragen, ob ein Fehler in Ihrem Code
enthalten ist, liefert Ihnen die folgende Metho-
de das Offset des Fehlers oder den Wert -1, falls
alles korrekt war:

int ep;

Die Beispiel Szene:
Per Pixel-Phong-Be-
leuchtung ohne Gloss
Mapping erzeugen Sie
eindrucksvolle Schat-
tierungen.

glGetintegerv(
GL_PROGRAM_ERROR_POSITION_ARB,

&ep);

Vertex-Programme

Ein Vertex-Programm verarbeitet immer nur
einen Vertex. lhr Einsatzgebiet reicht von einer
Koordinaten-Transformation zu Vertex Blen-
ding fir Animationen, Beleuchtungs- und Fog-
Berechnungen und mehr.

Als Eingabedaten stehen die Vertex-Attribute
wie Koordinate, Normale, Textur-Koordinaten,
Farbe usw. zur Verfligung. Weiterhin nutzen
Sie OpenGL States wie Materialeigenschaften,
Lichtquellen und Parameter. Letztere setzen
sich aus mindestens 96 4-Komponenten-Vek-
toren pro OpenGL-Kontext, ebenso vielen pro
Vertex-Programm und weiteren im Code defi-
nierten Konstanten zusammen. Sie rechnen
mit mindestens zwolf 4-Komponenten-Vekto-
ren und einem Adressregister. Die Operationen
umfassen Addition, Substraktion, Skalar- und
Kreuzprodukte, Vergleiche, Minimum-, Maxi-
mum- sowie Absolutwert-Bildung, zuséatzlich
Skalar-Operationen wie Potenzierung, Log-
arithmen, Reziproke und Reziproke-Wurzel-
Bildung.

Den Aufbau der Vertex-Programme stellen wir
anhand eines einfachen Beispiels vor. Es soll
die Koordinaten eines Vertex transformieren,
den normalisierten Vektor zur Lichtquelle im
Tangent Space berechnen und in der Vertex-
Farbe speichern. Die Vertex-Attribute tberge-
ben Sie mit den ublichen OpenGL-Befehlen
wie glVertex3f(...) oder glTexCoord3f(...).

Die Position der Lichtquelle im Object Space
speichern Sie als Parameter. Diesen Uibergeben
Sie folgendermafen von Ihrem Programm aus:

glProgrameEnvParameter4fARB(
GL_VERTEX_PROGRAM_ARB, 0, 1.0F,
1.0f, 1.0f, 1.0Ff);

Der zweite Parameter bezeichnet die Spei-
cherstelle. Jedes Vertex-Programm beginnt mit

der Kennung !!ARBvp1.0. Flir Programmpa-
rameter kdnnen Sie Aliasnamen vergeben.
Die Position der Lichtquelle ist in einem
solchen Parameter gespeichert. Um darauf
zuzugreifen, verwenden Sie program.env[1]
oder fuhren den Alias lightPosition ein:

11ARBvp1.0

PARAM lightPosition =
program.env[1];

Aliasnamen fiir Vertex Attribute definieren Sie
folgendermaRen:

ATTRIB binormal =
vertex.texcoord[1];

ATTRIB tangent =
vertex.texcoord[2];

ATTRIB normal = vertex.normal;

Aliasnamen fur Ausgabewerte definieren Sie
analog mit

OUTPUT tangentLightNormalized
= result._color;

Auf alle Werte kdnnen Sie auch ohne die Alia-
ses zugreifen. Vertex-Attribute erreichen Sie
mit vertex._, Ausgabewerte mit result._. Tem-
porére Variablen fiir die Berechnung definieren
Sie mit

TEMP toLight, tangentLight,
temp, inviLen;

Jetzt geht es an den Programmcode. Transfor-
mieren Sie die Vertex-Koordinaten. Dann be-
rechnen Sie den Vektor von der Vertex-Koordi-
naten zur Lichtquelle und speichern diesen in
toLight. Diesen Vektor transformieren Sie mit
drei Skalarprodukten in den Tangent Space
(gespeichert in tangentLight):

Transformation mit
Modelview+Projection Matrix
PARAM mvp[4] =
{ state.matrix.mvp };
DP4 result.position.x, mvp[O],
vertex.position;
DP4 result.position.y,
mvp[1], vertex.position;
DP4 result.position.z, mvp[2],
vertex.position;
DP4 result._position.w, mvp[3],
vertex.position;
ADD tolLight, [lightPosition,
-vertex.position;

DP3 tangentLight.x,
binormal, toLight;
DP3 tangentLight.y,

tangent, tolLight;
DP3 tangentLight.z,
normal, toLight;

Sie kénnen durch Angabe von .x, .y etc. ent-
weder den Schreibzugriff im Zielregister auf

diese Komponente beschranken oder im Falle
eines Quellregisters diese Komponente verviel-
fachen. Es ist auch Swizzling méglich: Vektor-
Operanden kdnnen nicht nur negiert werden,
sondern deren Komponenten lassen sich auch
beliebig anordnen und vervielfachen. Bei Ska-
laroperationen mussen Sie die verwendete
Vektorkomponente spezifieren, wie Sie dies
bei der Normalisierung des Lichtvektors sehen.
Kommentare im Programmcode beginnen mit
einem Rautezeichen, mit END wird das Pro-
gramm abgeschlossen:

quadrierte Lange des Vektors
DP3 temp, tangentLight,
tangentLight;

1/sqrt(lange)

RSQ inverselLength, temp.Xx;

normalisiert Vektor berechnen

MUL tangentLightNormalized,
tangentLight, inverselLength;

END

Mit diesem Vertex-Programm konnen Sie den
diffusen Teil der Phong- Beleuchtungsmodells
mit Bumpmapping berechnen, wenn lhre
Grafikkarte die GL_EXT_texture_env_combi-
ne-Erweiterung unterstiitzt. Dazu wéhlen Sie
fur die erste Textur-Stage eine Bumpmap-Tex-
tur. Konfigurieren Sie das Textur-Environment
so, dass ein Skalarprodukt zweier Vektoren
(codiert als Farben) durchgefthrt wird. Die Pa-
rameter flr glTexEnvi(GL_TEXTURE_ENV, ?, ?

sind:

GL_TEXTURE_ENV_MODE:

GL_COMBINE_EXT
GL_COMBINE_RGB_EXT :

GL_DOT3_RGBA_EXT

Operanden sind der interpolierte Lichtvektor
im Tangent Space (gespeichert in der Farbe):

GL_SOURCEO_RGB_EXT :
GL_PREVIOUS_EXT

GL_OPERANDO_RGB_EXT:
GL_SRC_COLOR

und die Normale aus der Bumpmap:

GL_SOURCE1_RGB_EXT: GL_TEXTURE
GL_OPERAND1_RGB_EXT:GL_SRC_COLOR

Aktivieren Sie die Vertex-Programme vor dem
Rendering mit der Eingabe

glEnable(GL_VERTEX_PROGRAM_ARB)

Fir eine ganz genaue Berechnung normalisie-
ren Sie die Vektoren. Das gelingt mit den Tex-
tur-Einheiten, wenn Sie Normalizing Cube
Maps verwenden.

Fragment-Programme

Mit den Fragment-Programmen berechnen Sie
die Beleuchtung in Floating-Point-Genauigkeit.

Ein Fragment-Programm ersetzt Texturierung,
Farbberechnung und das Fogging der OpenGL-
Pipeline. Weiterhin kénnen Sie andere Opera-
tionen durchfiihren, die bisher spezielle Erwei-
terungen Ubernommen haben, wie Tiefenver-
gleiche fir Depth Map Shadows oder
Dependent Texture Lookups fiir Environment
Bump Mapping. Fur diese Aufgaben greifen Sie
auf einen, dem Vertex-Programm sehr &hnli-
chen, Befehlssatz zu. Als wichtige neue Instruk-
tionen nutzen Sie das Auslesen von Texturen,
das Fragment Killing (bedingtes Nichtzeichnen
eines Fragments) und die Option, den Tiefen-
wert eines Fragments zu modifizieren.

Ein Fragment-Programm besitzt mindestens
zehn Eingabe-Attribute, auf die Sie mit frag-
ment._ zugreifen, 24 Programmparameter, 16
temporare Register und kann mindestens vier
Texture Indirections, 48 ALU-Instruktionen
(Arithmetic Logic Unit) und 24 Textur-Instruk-
tionen durchfiihren. Diese Vielzahl gewéhrt
zahlreiche neue Grafikeffekte.

Syntax und Semantik entsprechen denen der
Vertex-Programme, auch was die Aliasnamen
angeht. Als Beispiel dient das Fragment-
Programm, das das Phong- Beleuchtungs-
modell auswertet. Dieses benétigt auRer
dem Licht- noch den Betrachtervektor, der zu-
sdtzlich im Vertex-Programm berechnet wird.
Alle Eingabewerte sehen Sie in der Tabelle
unten#.

Das Programm beginnt wieder mit einer Ken-
nung ARBfp1.0 und lhren Alias-Definitionen
entsprechend der Tabelle. Unser Beispielpro-
gramm bendtigt einige temporare Variablen,
die Sie dem Quelltext entnehmen.

Der Programmcode beginnt damit, dass Sie
per TEX-Befehl die Texturen auslesen. Diese
sind die Farbe der Oberflache, die Bumpmap
und der Gloss-Faktor. Die Parameter sind Ziel-
register, Textur-Koordinatenregister, Textur-Sta-
ge und zuletzt der Textur-Modus, um auf 2D-,
3D- und Cubemap-Texturen zugreifen zu kon-
nen:

TEX surfaceColor, texCoordoO,
texture[0], 2D;
TEX bumpNormal,
texCoord0, texture[l], 2D;
TEX glossFactor,
texCoordO, texture[2], 2D;

Jetzt miissen Sie die Normale aus dem RGB-
Wert decodieren, also den Wertebereich der
Komponente [0,1] auf [-1,1] strecken — mit
den Konstanten (2,2,2,2) und (1,1,1,1) — und
anschlieend normalisieren:

MAD bumpNormal, bumpNormal,

two, -one;

Ebenfalls normalisieren Sie den Betrachter-
und Lichtvektor, um akkurat rechnen zu kén-

Tangent Space: Dieses mathematische Modell
legt die Normale in die Z-Achse.

——X 17

Vi V2

Lineare Interpolation: Aus den Vektorkompo-
nenten resultiert eine Langenanderung.

nen. Bei der Normalisierung des Lichtvektors
erhalten Sie als Zwischenergebnis dessen Lan-
ge, mit der Sie die Abnahme der Lichtintensitat
berechnen kénnen. Eine quadratische Abnah-
me konnen Sie mit nur zwei Instruktionen be-
rechnen:

(cAtt=(1.0,0.0,0.1,0.0)):
MAD att, distance.z,

CAtt.z, cAtt.x;
RCP att, att.x;

Den Reflexionsvektor berechnen Sie mit

DP3 temp, bumpNormal,
lightVector;

MUL temp, temp, bumpNormal;

Jetzt haben Sie alle Parameter und Koeffizien-
ten fiir das Phong-Modell bestimmt und kon-
nen es auswerten.Mit den Skalarprodukten

N dot L
DP_SAT diffuse,bumpNormal, lightVector;

und der Kombination aller Zwischenergebnis-
se beenden Sie das Programm. set

|
Die Eingabewerte der
Fragment-Programme

program.env[0] ambientes Licht

program.env[1] diffuses Licht
program.env[2] spekulares Licht
program.env[3] Phong Exponent
fragment.texcoord[0] Textur-Koordinate
fragment.texcoord[1] Lichtvektor L

fragment.texcoord[2] Betrachtervektor V

215

PC Magazin 4/2003 : www.pc-magazin.de

