
Da moderne Grafikkarten frei program-

mierbar sind, lassen sich realistische Be-

leuchtungseffekte in Echtzeit darstellen. Den er-

sten Schritt in dieser Richtung stellen die Ver-

tex-Programme dar. Diese von Direct3D-

Experten auch als Vertex Shaders bezeichnete

Technik führte nVidia mit der GeForce-Grafik-

karten-Serie ein. Auf Pixelbasis stehen seit län-

gerem die Texture Shaders und Register Com-

biners (nVidia) bzw. Pixel/Fragment Shaders

(ATI/Direct3D) zur Verfügung.

Die neueste Grafikkarten-Generation wie ATI

Radeon 9500/9700 und nVidia GeForce FX ist

frei programmierbar auf der Fragment-(Pixel-)

Stufe (also im Rasterisierungsteil der Grafik-Pi-

peline). Sie können in einer Art Assembler-

Sprache programmieren, ähnlich den Vertex-

Programmen, mit einem Hochsprachen-Com-

piler wie nVidias Cg oder der HLSL (High Level

Shading Language) von DirectX9.

In OpenGL sind Hersteller übergreifende Stan-

dards für Vertex- und Fragment- Programme

festgelegt worden. Wir berechnen für jeden

Pixel – statt nur für jeden Vertex – die Beleuch-

tung (Per-Pixel-Lighting) mit dem vollständi-

gen Phong- Beleuchtungsmodell und führen

Bumpmapping durch. Wer nicht über die

neueste Grafikkarte verfügt, erfährt, wie er

PROGRAMMIERUNG : PC UNDERGROUND

212

PC
 M

ag
az

in
 4

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Mit Geometrie- und Textur-

Verarbeitung erzielen Sie

Bumpmapping-Effekte.

Neueste Grafikkarten verfügen

über programmierbare

Fragment Shaders, um die

Beleuchtung für jeden Pixel

zu berechnen.

Carsten Dachsbacher

Vertex- und Fragment-Programme mit OpenGL

Beleuchtung –
Punkt für Punktw

or
ks

ho
p

Die Attribute für das

Vertex-Programm

Attribut Bedeutung

position Vertex-Koordinate

texcoord[0] Textur-Koordinate

texcoord[1] Binormale

texcoord[2] Tangente

normal Normale

Pixel Lighting
mit dem Beispiel-
programm: Wagen Sie
den Schritt von der Pra-
xis der aufregenden
Ego-Shooter in die Theo-
rie, die diese virtuellen
Welten erschafft.

ohne Fragment-Programme, nur mit Vertex-

Programmen Bumpmapping-Effekte rendern

kann.

Das Phong-Beleuchtungsmodell

Phong ist das am häufigsten eingesetzte Be-

leuchtungsmodell in der Computergrafik. Es

wurde 1975 von Phong Bui-Toung (für nicht

perfekte Reflektoren) entwickelt und dient da-

zu, die Farbe eines Oberflächenpunkts zu be-

stimmen.

Dazu benötigen Sie dessen Normale N, den

Vektor zur Lichtquelle L, den Vektor der reflek-

tierten Lichtrichtung R und den Vektor zum

Betrachter V. Die Grafik auf der folgenden Sei-

te verdeutlicht den Zusammenhang der vor-

kommenden Vektoren. Weiterhin fließen in die

Formel die Farbe der Lichtquelle I und die Ei-

genfarbe der Oberfläche O ein. Weitere Ober-

flächenparameter sind das ambiente, diffuse

und spekular reflektierte Licht, gegeben durch

die Koeffizienten k(a), k(d) und k(s). Der Atte-

nuation Faktor f_att gibt die Abnahme der In-

tensität der Lichtquelle in Abhängigkeit zum

Abstand an.

F=k(a)·I·O + f_att·I·
[k(d)·O·(N dot L) +
gloss·k(s)·(R·V)^n]

Die Formel enthält Farbvektoren und berech-

net RGB-Komponenten. Der Koeffizient n dient

dazu, Glanzlichter zu modellieren. Größere

Werte für n resultieren in kleineren schärferen

Glanzlichtern. Der gloss-Faktor modelliert

Unregelmäßigkeiten in der spekularen Refle-

xion, um glänzende und nicht glänzende Stel-

len auf einer metallischen Oberfläche dar-

zustellen.

Bumpmapping

Beim Phong-Modell hängen viele Parameter

entweder von den Oberflächeneigenschaften

wie der Farbe ab oder sind durch die Lage des

Objekts in der Szene relativ zur Lichtquelle und

zum Betrachter bestimmt (wie durch L, R und

V). Sie können daher nur in die Beleuchtungs-

berechnung eingreifen, indem Sie die Norma-

le verändern. Genau das geschieht beim

Bumpmapping. Das Verfahren speichert die je-

weilige Oberflächen-Normale, codiert per

RGB-Farbwert in einer Textur, und berechnet

so die Beleuchtung.

Wir setzen voraus, dass Sie die Position der

Lichtquelle im Object Space, also relativ zum

Koordinatensystem, in dem die Object Vertices

definiert sind, bestimmt haben. In einer Textur

für Ihr 3D-Objekt ist die Normale gespeichert,

die Sie zur Beleuchtungsberechnung verwen-

den. Das heißt, jedem Punkt der Oberfläche ist

ein eindeutiger (unikater) Texel der Textur zu-

geordnet. Dieser Texel enthält die Normale in

codierter Form. Er hängt von der Beschaffen-

heit der Oberfläche ab.

Da diese Methode schwierig umzusetzen ist,

verwenden wir fürs Bumpmapping eine ande-

re Technik, bei der jedem Vertex nicht nur ei-

ne Koordinate, sondern ein Tangent Space

(ein eigenes Koordinatensystem) zugeordnet

wird. Dieses begnügt sich mit den drei Vekto-

ren Tangente, Binormale und Normale.

Wählen Sie Tangente und Binormale so, dass

sie entsprechend den Vektoren des Textur-

Mappings verlaufen. Solche Tangent Spaces

können Sie mit 3D-Programmen aufspannen.

Ein Tangent Space muss der Anforderung ge-

nügen, dass die Normale n der Z-Achse ent-

spricht. So berechnen Sie den Tangent Space

für einen Vertex in Abhängigkeit von n:

VECTOR up = { 0.0, 0.0, -1.0 };

// X->Kreuzprodukte bilden
binormal = n X up;
tangente = bi X n;

Für jeden Vertex speichern Sie die drei Vekto-

ren (in normalisierter Form). Für das Bump-

mapping wird nun jeder Vektor von der Vertex-

Position zur Lichtquelle, z.B. mit einem Vertex

Programm, in dessen Tangent Space transfor-

miert, was drei Skalarprodukten entspricht:

// Vektor vertex -> lichtquelle
toLight =
lightPosition - vertexPosition;
tangentLight.x =
binormale dot toLight;

tangentLight.y =
tangente dot toLight;

tangentLight.z =
normale dot toLight;

Die drei Komponenten des tangentLight-

Vektors speichern Sie in einer Textur-Koor-

dinaten. Diese und somit der Vektor zur Licht-

quelle wird beim Rendering der Dreiecke zwi-

schen den Eckpunkten interpoliert und steht

für jeden Pixel zur Verfügung. Allerdings

bewirkt die lineare Interpolation der Kom-

ponenten, dass die Länge des Vektors nicht

konstant ist.

Fürs vollständige Phong-Beleuchtungsmodell

benötigen Sie die Richtung zur Kamera im

Tangent Space, die Sie analog berechnen.

Der Vorteil des Tangent Space Bumpmapping

liegt in der Texturierung der Objekte. In der

Bumpmap Texture sind die Normalen codiert,

die für eine Fläche mit der Normalen (0,0,1)

gültig sind. Durch die Tangent-Space-Transfor-

mation können Sie ein beliebiges Mapping die-

ser Textur auf das 3D-Objekt verwenden. Sol-

che Bumpmap-Texturen werden meist aus

Heightmaps erzeugt. Eine Heightmap ist ein

Graustufen-Bitmap, wobei die Graustufe eines

Texels dessen Höhe repräsentiert. Mit geeigne-

ten Tools wie von nVidia (http://developer.nvi-
dia.com/view.asp?IO=map_generator), können

Sie daraus eine Bumpmap erzeugen.

Programmierbare Grafik-Pipeline

Um den Tangent Space und die Beleuchtung

zu berechnen, benötigen Sie die OpenGL Ex-

tensions für die Vertex- bzw. Fragment-Pro-

gramme: GL_ARB_VERTEX_ und

GL_ARB_FRAGMENT_PROGRAM. Die Spezifi-

kationen aller OpenGL Extensions finden Sie

unter http://oss.sgi.com/projects/ogl-sample/
registry/. Beide Erweiterungen nutzen diesel-

be Schnittstelle, um den Assembler Code eines

Program, gespeichert in einem String, zu über-

geben und zu nutzen. Die Funktionszeiger la-

den Sie im Beispielprogramm mit dem

wglGetProcAddress(...)-Befehl.

213

PC
 M

ag
az

in
 4

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Quelltexte und Routinen > CD 1
Heft Add-ons/Programmierung/PC Underground

Eine Heightmap: Da-
raus erzeugen Sie die
Bumpmap, welche Sie
mit einem vereinfach-
ten mathematischen
Modell gestalten.

Pixel-Phong-Beleuchtung: Gestaltung ohne
Eigenfarbe der Oberflächen

Als erstes fordern Sie immer einen Identifier

für Ihr Vertex- oder Fragment-Programm an:

GLuint programID;
glGenProgramsARB(1, &programID);

Ob es sich hier um ein Vertex- oder Fragment-

Programm handelt, bestimmt bei den folgen-

den Befehlen das Target GL_VERTEX_PRO-

GRAM_ARB oder GL_FRAGMENT_PRO-

GRAM_ARB.

Im nächsten Schritt erweitern Sie das Pro-

gramm. Sie übergeben den String mit dem

Programmcode, den Sie z.B. aus einer Textda-

tei vorher eingelesen haben:

glBindProgramARB(
GL_VERTEX_PROGRAM_ARB,
programID);

char *programCode = „...“;

glProgramStringARB(
GL_VERTEX_PROGRAM_ARB,
GL_PROGRAM_FORMAT_ASCII_ARB,
strlen(programCode),

programCode);

Um abzufragen, ob ein Fehler in Ihrem Code

enthalten ist, liefert Ihnen die folgende Metho-

de das Offset des Fehlers oder den Wert -1, falls

alles korrekt war:

int ep;

glGetIntegerv(
GL_PROGRAM_ERROR_POSITION_ARB,
&ep);

Vertex-Programme

Ein Vertex-Programm verarbeitet immer nur

einen Vertex. Ihr Einsatzgebiet reicht von einer

Koordinaten-Transformation zu Vertex Blen-

ding für Animationen, Beleuchtungs- und Fog-

Berechnungen und mehr.

Als Eingabedaten stehen die Vertex-Attribute

wie Koordinate, Normale, Textur-Koordinaten,

Farbe usw. zur Verfügung. Weiterhin nutzen

Sie OpenGL States wie Materialeigenschaften,

Lichtquellen und Parameter. Letztere setzen

sich aus mindestens 96 4-Komponenten-Vek-

toren pro OpenGL-Kontext, ebenso vielen pro

Vertex-Programm und weiteren im Code defi-

nierten Konstanten zusammen. Sie rechnen

mit mindestens zwölf 4-Komponenten-Vekto-

ren und einem Adressregister. Die Operationen

umfassen Addition, Substraktion, Skalar- und

Kreuzprodukte, Vergleiche, Minimum-, Maxi-

mum- sowie Absolutwert-Bildung, zusätzlich

Skalar-Operationen wie Potenzierung, Log-

arithmen, Reziproke und Reziproke-Wurzel-

Bildung.

Den Aufbau der Vertex-Programme stellen wir

anhand eines einfachen Beispiels vor. Es soll

die Koordinaten eines Vertex transformieren,

den normalisierten Vektor zur Lichtquelle im

Tangent Space berechnen und in der Vertex-

Farbe speichern. Die Vertex-Attribute überge-

ben Sie mit den üblichen OpenGL-Befehlen

wie glVertex3f(...) oder glTexCoord3f(...).

Die Position der Lichtquelle im Object Space

speichern Sie als Parameter. Diesen übergeben

Sie folgendermaßen von Ihrem Programm aus:

glProgramEnvParameter4fARB(
GL_VERTEX_PROGRAM_ARB, 0, 1.0f,

1.0f, 1.0f, 1.0f);

Der zweite Parameter bezeichnet die Spei-

cherstelle. Jedes Vertex-Programm beginnt mit

der Kennung !!ARBvp1.0. Für Programmpa-

rameter können Sie Aliasnamen vergeben.

Die Position der Lichtquelle ist in einem

solchen Parameter gespeichert. Um darauf

zuzugreifen, verwenden Sie program.env[1]

oder führen den Alias lightPosition ein:

!!ARBvp1.0

PARAM lightPosition =
program.env[1];

Aliasnamen für Vertex Attribute definieren Sie

folgendermaßen:

ATTRIB binormal =
vertex.texcoord[1];

ATTRIB tangent =
vertex.texcoord[2];

ATTRIB normal = vertex.normal;

Aliasnamen für Ausgabewerte definieren Sie

analog mit

OUTPUT tangentLightNormalized
= result.color;

Auf alle Werte können Sie auch ohne die Alia-

ses zugreifen. Vertex-Attribute erreichen Sie

mit vertex._, Ausgabewerte mit result._. Tem-

poräre Variablen für die Berechnung definieren

Sie mit

TEMP toLight, tangentLight,
temp, invLen;

Jetzt geht es an den Programmcode. Transfor-

mieren Sie die Vertex-Koordinaten. Dann be-

rechnen Sie den Vektor von der Vertex-Koordi-

naten zur Lichtquelle und speichern diesen in

toLight. Diesen Vektor transformieren Sie mit

drei Skalarprodukten in den Tangent Space

(gespeichert in tangentLight):

Transformation mit
Modelview+Projection Matrix
PARAM mvp[4] =

{ state.matrix.mvp };
DP4 result.position.x, mvp[0],

vertex.position;
DP4 result.position.y,

mvp[1], vertex.position;
DP4 result.position.z, mvp[2],

vertex.position;
DP4 result.position.w, mvp[3],

vertex.position;

ADD toLight, lightPosition,
-vertex.position;

DP3 tangentLight.x,
binormal, toLight;

DP3 tangentLight.y,
tangent, toLight;

DP3 tangentLight.z,
normal, toLight;

Sie können durch Angabe von .x, .y etc. ent-

weder den Schreibzugriff im Zielregister auf

PROGRAMMIERUNG : PC UNDERGROUND

214

PC
 M

ag
az

in
 4

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Vier Vektoren: 1975 hat Phong Bui-Toung sein
Beleuchtungsmodell für nicht perfekte Reflek-
toren entwickelt.

Die Beispiel Szene:
Per Pixel-Phong-Be-
leuchtung ohne Gloss
Mapping erzeugen Sie
eindrucksvolle Schat-
tierungen.

diese Komponente beschränken oder im Falle

eines Quellregisters diese Komponente verviel-

fachen. Es ist auch Swizzling möglich: Vektor-

Operanden können nicht nur negiert werden,

sondern deren Komponenten lassen sich auch

beliebig anordnen und vervielfachen. Bei Ska-

laroperationen müssen Sie die verwendete

Vektorkomponente spezifieren, wie Sie dies

bei der Normalisierung des Lichtvektors sehen.

Kommentare im Programmcode beginnen mit

einem Rautezeichen, mit END wird das Pro-

gramm abgeschlossen:

quadrierte Länge des Vektors
DP3 temp, tangentLight,

tangentLight;
1/sqrt(länge)
RSQ inverseLength, temp.x;
normalisiert Vektor berechnen
MUL tangentLightNormalized,

tangentLight, inverseLength;
END

Mit diesem Vertex-Programm können Sie den

diffusen Teil der Phong- Beleuchtungsmodells

mit Bumpmapping berechnen, wenn Ihre

Grafikkarte die GL_EXT_texture_env_combi-

ne-Erweiterung unterstützt. Dazu wählen Sie

für die erste Textur-Stage eine Bumpmap-Tex-

tur. Konfigurieren Sie das Textur-Environment

so, dass ein Skalarprodukt zweier Vektoren

(codiert als Farben) durchgeführt wird. Die Pa-

rameter für glTexEnvi(GL_TEXTURE_ENV, ?, ?)

sind:

GL_TEXTURE_ENV_MODE:
GL_COMBINE_EXT

GL_COMBINE_RGB_EXT :
GL_DOT3_RGBA_EXT

Operanden sind der interpolierte Lichtvektor

im Tangent Space (gespeichert in der Farbe):

GL_SOURCE0_RGB_EXT :
GL_PREVIOUS_EXT

GL_OPERAND0_RGB_EXT:
GL_SRC_COLOR

und die Normale aus der Bumpmap:

GL_SOURCE1_RGB_EXT: GL_TEXTURE
GL_OPERAND1_RGB_EXT:GL_SRC_COLOR

Aktivieren Sie die Vertex-Programme vor dem

Rendering mit der Eingabe
glEnable(GL_VERTEX_PROGRAM_ARB)

Für eine ganz genaue Berechnung normalisie-

ren Sie die Vektoren. Das gelingt mit den Tex-

tur-Einheiten, wenn Sie Normalizing Cube

Maps verwenden.

Fragment-Programme

Mit den Fragment-Programmen berechnen Sie

die Beleuchtung in Floating-Point-Genauigkeit.

Ein Fragment-Programm ersetzt Texturierung,

Farbberechnung und das Fogging der OpenGL-

Pipeline. Weiterhin können Sie andere Opera-

tionen durchführen, die bisher spezielle Erwei-

terungen übernommen haben, wie Tiefenver-

gleiche für Depth Map Shadows oder

Dependent Texture Lookups für Environment

Bump Mapping. Für diese Aufgaben greifen Sie

auf einen, dem Vertex-Programm sehr ähnli-

chen, Befehlssatz zu. Als wichtige neue Instruk-

tionen nutzen Sie das Auslesen von Texturen,

das Fragment Killing (bedingtes Nichtzeichnen

eines Fragments) und die Option, den Tiefen-

wert eines Fragments zu modifizieren.

Ein Fragment-Programm besitzt mindestens

zehn Eingabe-Attribute, auf die Sie mit frag-

ment._ zugreifen, 24 Programmparameter, 16

temporäre Register und kann mindestens vier

Texture Indirections, 48 ALU-Instruktionen

(Arithmetic Logic Unit) und 24 Textur-Instruk-

tionen durchführen. Diese Vielzahl gewährt

zahlreiche neue Grafikeffekte.

Syntax und Semantik entsprechen denen der

Vertex-Programme, auch was die Aliasnamen

angeht. Als Beispiel dient das Fragment-

Programm, das das Phong- Beleuchtungs-

modell auswertet. Dieses benötigt außer

dem Licht- noch den Betrachtervektor, der zu-

sätzlich im Vertex-Programm berechnet wird.

Alle Eingabewerte sehen Sie in der Tabelle

unten#.

Das Programm beginnt wieder mit einer Ken-

nung ARBfp1.0 und Ihren Alias-Definitionen

entsprechend der Tabelle. Unser Beispielpro-

gramm benötigt einige temporäre Variablen,

die Sie dem Quelltext entnehmen.

Der Programmcode beginnt damit, dass Sie

per TEX-Befehl die Texturen auslesen. Diese

sind die Farbe der Oberfläche, die Bumpmap

und der Gloss-Faktor. Die Parameter sind Ziel-

register, Textur-Koordinatenregister, Textur-Sta-

ge und zuletzt der Textur-Modus, um auf 2D-,

3D- und Cubemap-Texturen zugreifen zu kön-

nen:

TEX surfaceColor, texCoord0,
texture[0], 2D;

TEX bumpNormal,
texCoord0, texture[1], 2D;

TEX glossFactor,
texCoord0, texture[2], 2D;

Jetzt müssen Sie die Normale aus dem RGB-

Wert decodieren, also den Wertebereich der

Komponente [0,1] auf [-1,1] strecken – mit

den Konstanten (2,2,2,2) und (1,1,1,1) – und

anschließend normalisieren:

MAD bumpNormal, bumpNormal,
two, -one;

Ebenfalls normalisieren Sie den Betrachter-

und Lichtvektor, um akkurat rechnen zu kön-

nen. Bei der Normalisierung des Lichtvektors

erhalten Sie als Zwischenergebnis dessen Län-

ge, mit der Sie die Abnahme der Lichtintensität

berechnen können. Eine quadratische Abnah-

me können Sie mit nur zwei Instruktionen be-

rechnen:

(cAtt=(1.0,0.0,0.1,0.0)):
MAD att, distance.z,

cAtt.z, cAtt.x;
RCP att, att.x;

Den Reflexionsvektor berechnen Sie mit

DP3 temp, bumpNormal,
lightVector;

MUL temp, temp, bumpNormal;

Jetzt haben Sie alle Parameter und Koeffizien-

ten für das Phong-Modell bestimmt und kön-

nen es auswerten.Mit den Skalarprodukten

N dot L
DP_SAT diffuse,bumpNormal,lightVector;

und der Kombination aller Zwischenergebnis-

se beenden Sie das Programm. : et

215

PC
 M

ag
az

in
 4

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Die Eingabewerte der

Fragment-Programme

Eingabewert Bedeutung

program.env[0] ambientes Licht

program.env[1] diffuses Licht

program.env[2] spekulares Licht

program.env[3] Phong Exponent

fragment.texcoord[0] Textur-Koordinate

fragment.texcoord[1] Lichtvektor L

fragment.texcoord[2] Betrachtervektor V

Lineare Interpolation: Aus den Vektorkompo-
nenten resultiert eine Längenänderung.

Tangent Space: Dieses mathematische Modell
legt die Normale in die Z-Achse.

