188

PC Magazin 6/2003 : www.pc-magazin.de

PROGRAMMIERUNG :

Entlocken Sie Ihrer Grafikkarte
ungeahnte Effekte wie
Dithering, Kantenfilter und
Leuchtspuren. Bereichern Sie
lhre Rendering- Szenen mit
Post-Processing in Echtzeit per
OpenGL. Mit der Macht von
Bildern spielen Sie mit den
Gefiihlen des Betrachters.

Carsten Dachsbacher

Szene: Mit diesem Bild testen Sie alle

Post-Processing-Effekte.

PC UNDERGROUND

Echtzeit-lmage-Post-Processing mit OpenGL

Bewegende
Botschaften

CGrafikkarten schaffen es mittlerweile, zu-
@ nehmend komplexe Szenen immer rea-
listischer darzustellen. Das verbessert die Geo-
metrie, Texturierung und Beleuchtung einer
virtuellen Szene. Nicht nur das Rendering einer
Szene kann den Betrachter iiberzeugend be-
eindrucken. Eine wichtige Rolle spielen auch
die so genannten Post-Processing-Effekte. Sol-
che Effekte fiigen Sie dem Bild nach dem Ren-
dering hinzu. Diese Art der Nachbearbeitung
kann fiir viele Effekte auch mit Hilfe der Grafik-
karte erfolgen. Einige Beispiele, manche mit
Praxisrelevanz, andere eher aus der akademi-
schen Ecke, lernen Sie in dieser Ausgabe ken-
nen und programmieren. Fiir einige Effekte ge-
niigen Grafikkarten der Direct3D-8-Klasse wie
nVidia-GeForce-3 und GeForce-4 oder ATI-Ra-
deon-8500/9000. Aber Sie sehen auch, wie viel
einfacher und effizienter es ist, solche Effekte
auf den Grafikkarten der neuesten Generation,
also der ATI-Radeon-9700 und nVidia-GeForce-
FX, zu programmieren.

Post-Processing allgemein

Wie erwahnt, werden Post-Processing Effekte
im Nachhinein zum Rendering hinzugefiigt,
oder dieses wird modifiziert. Um aber jeden

Pixel des Bildschirms zu modifizieren, miissen
Sie auf dessen Farb- und Alpha-Wert zugreifen.
Das bedeutet, dass Sie eine Textur benétigen,

in die Sie die 3D-Szene zeichnen. Dies konnen
Sie prinzipiell auf zwei Arten erreichen: entwe-
der Sie rendern die Szene in den Backbuffer
(wie bei jedem herkémmlichen Rendering-
Vorgang), oder Sie rendern direkt in eine Tex-
tur. Letzteres, auch die effektivste Variante, er-
reichen Sie mit den so genannten P-Buffers
(PC Underground 3/03, ab. S.168). Im Beispiel-
Programm zu dieser Ausgabe ist die P-Buffer
Klasse enthalten, die Sie wie folgt einsetzen.
Ein P-Buffer (Pixel-Buffer) ist ein Speicherbe-
reich, den Sie wie den normalen Frame-Buffer
als Rendertarget, d.h. um dort etwas zu ren-
dern, verwenden konnen. Ein P-Buffer kann ei-
nen eigenen Stencil und Depth Buffer besitzen
und verschiedene Farbformate unterstiitzen.
Sein grofer Vorteil: Sie kénnen ihn fiir ein an-
deres Rendertarget (wie fiir Frame- oder
P-Buffer) als Textur verwenden. Dies bedeutet:
Sie konnen lhre 3D-Szene in eine dynamische
Textur (den P-Buffer) zeichnen und anschlie-
3end mit dieser Textur Post-Processing Effekte
anwenden. Dabei kann die Auflésung des P-
Buffers der des Frame-Buffers entsprechen,
muss aber nicht.

Die Verwendung der P-Buffer Klasse CPBuffer
ist denkbar einfach: dem Konstruktor iiberge-
ben Sie die Auflésung des P-Buffers in X- und
Y-Richtung sowie den Device Context des
OpenGL-Fensters, womit ein P-Buffer mit 32
Bit Farbtiefe und einem 16 Bit Depth Buffer an-

Quelltexte sowie fertig iibersetzte Routinen > CD
Praxis/Programmierung/PC Underground

gelegt wird. Um den P-Buffer als Rendertarget
zu aktivieren, rufen Sie die Methode makeCur-
rent() auf. Diese verwendet intern die Funkti-
on wglMakeCurrent(...), mit der Sie auch den
Frame-Buffer wieder als Rendertarget aktivie-
ren. Die Parameter sind dabei der Device Con-
text und OpenGL Rendering Context des Fens-
ters.

So verwenden Sie nun einen P-Buffer als Tex-
tur: Zundchst wahlen Sie eine OpenGL Textur
mit Hilfe einer ID aus. Diese ID legt der Kon-
struktor bereits fir Sie an. Im Anschluss bin-
den Sie den P-Buffer an diese Textur ID:

glBindTexture(GL_TEXTURE_2D,
pBuffer->getTexID());
pBuffer->bind();

Jetzt konnen Sie die Textur wie iblich in
OpenGL verwenden. Bevor Sie allerdings wie-
der den Inhalt des P-Buffers modifizieren wol-
len, miissen Sie den P-Buffer wieder von der
Textur ID 16sen. Dies ibernimmt die Methode
release().

Dithering

Der erste hier vorgestellte Post-Processing
Effekt ist mehr Spielerei und Beispiel:
Dithering. Dieses Verfahren stellt ein Bild mit
reduzierter Farbanzahl dar (im Beispiel
schwarz und weif3), wobei es Muster verwen-
det. Dies soll den Eindruck von Farben oder
Graustufen erwecken. Im Folgenden erfahren
Sie, wie Sie Thre 3D-Szenen in Echtzeit per
Schwarz-Wei3-Dithering darstellen.

Bei vielen Dithering-Verfahren ist die Auflo-
sung des resultieren Bildes hoher als die des
Ausgangsbildes. Solche Verfahren lassen sich
mit dem Einsatz geeigneter Texturen leicht mit
der Grafikkarte umsetzen. Andere Verfahren,
wie z.B. das Floyd-Steinberg Verfahren, bear-
beiten das Bild Pixel fiir Pixel und brauchen ei-
nen Ubertrag, also ein gemerktes Zwischenre-
sultat. Das Verfahren lasst sich somit nicht auf
der Grafikkarte implementieren.

Das Beispiel verwendet ein einfaches Verfah-
ren, das aus einem 32-Bit Farbbild mit Hilfe der
nVidia Register Combiner (gewissermafen
das OpenGL Pendant zu den Direct3D acht Pi-
xel Shaders) ein Schwarz-Wei8-Bild erzeugt.
Die Register Combiner bestehen aus mehreren
(abhangig vom GeForce Modell) General
Combiners, die mit komponentenweiser Mul-
tiplikation, Skalarprodukten oder Summen
operieren konnen und einem Final Combiner,
der aus den Zwischenergebnissen den endgiil-
tigen Farbwert bestimmt. Auf die Ein- und Aus-
gabewerte eines Combiners kdnnen Sie so ge-
nannte Mappings anwenden. Mappings stre-
cken, stauchen oder invertieren den

Wertebereich und &ndern Vorzeichen (PC Ma-
gazin Spezial 27).

So bearbeiten Sie jeden Pixel: Zunéchst be-
rechnen Sie aus dem Farbwert eine Helligkeit.
Dabei konnen Sie die unterschiedliche perzep-
tive Wahrnehmung von rot, griin und blau
durch unsere Augen berticksichtigen, indem
Sie die Werte mit 0.3, 0.59 und 0.1 (in der
Summe 100 Prozent) gewichten und aufsum-
mieren. Dazu bilden Sie aus dem Farbwert der
Textur und einem konstanten Vektor (0.3, 0.59,
0.11, 0.0) ein Skalarprodukt. Das Resultat spei-
chern Sie in allen Komponenten des Zielregis-
ters. An dieser Stelle setzen Sie eine zweite
Graustufen-Textur ein. In ihr speichern Sie in
jedem Texel einen Zufallswert zwischen 0 und
1. Den Zufallswert, dessen Intervall Sie von
[0;1] im Register Combiner auf /-0.5; 0.5] ab-
bilden, addieren Sie zum Wert des Skalarpro-
duktes und verwenden das Resultat als Alpha-
Wert, der letztendlich zum Zeichnen verwen-
det wird.

Zusammengefasst: Der erste General Combi-
ner berechnet den Grauwert mit Hilfe des Ska-
larproduktes und damit den Alpha-Wert und
setzt die RGB-Werte auf 1. Der Final Combiner
lasst den bereits berechneten RGBA Vektor
durch.

Was haben Sie damit erreicht? Vom berechne-
ten Grauwert addieren Sie eine Zufallszahl zwi-
schen -0.5 und 0.5 und erweitern das Wertein-
tervall des Alpha-Werts auf /-0.5, 1.5/. Um die-
sen Post-Processing Effekt zu verwenden,
16schen Sie den Frame-Buffer mit schwarzem
Hintergrund und schalten vor dem Rendering
den Alpha-Test ein, so dass nur Pixel gezeich-
net werden, deren Alpha-Wert grofier als 0.5
ist. Dann schalten Sie die Register Combiner
mit dem oben beschriebenen Setup ein und
zeichnen die gerenderte Szene (enthalten in
der P-Buffer Textur) mit zwei Dreiecken iiber
den ganzen sichtbaren Bereich. Damit sehen
Sie den Dithering Effekt.

Kantenfilter

Der zweite Effekt ist ein aus Bildbearbeitungs-
programmen bekannter Bild-Filter, der Kanten
in 2D-Bildern hervorhebt. Im Gegensatz zum
ersten Beispiel verwenden Sie diesen Effekt in
der Praxis wie beim Non-Photorealistic Rende-
ring oder Toon Shading.

Kantenfilter untersuchen die Nachbar-Pixel je-
des Pixels im Bild, bzw. die Differenz ihrer Hel-
ligkeitswerte. Uberschreitet die Differenz be-
tragsmafig einen vorher festgelegten Schwell-
wert, so nimmt man an, dass es sich beim
betrachteten Pixel um den Teil einer Kante
handelt. Zunéchst stellen Sie sich einen einfa-
chen Kantenfilter vor, der nur vier Nachbar Pi-

xel betrachtet, und den Sie mit den Register
Combiners berechnen. Es wird dazu die Diffe-
renz der Helligkeiten des oben und unten,
bzw. links und rechts benachbarten Pixels be-
notigt. Das Bild stellt einen Bildfilter dar, wie er
in der Praxis iblich ist: in den Késtchen sind

Dithering: Frei nach Diirer stellen Sie die 3D-
Szene schwarz-weil dar.

0(+1]0
+1 -1

Kantendetektion: Dies
zeigt einen einfachen
Filter-Kernel.

Nachbarschafts-Sampling: So arbeitet das
Verfahren mit D3D8-Grafikkarten.

Kantenfilter: Die Rander heben Sie mit Register
Combiners hervor.

PC Magazin 6/2003 : www.pc-magazin.de

PC Magazin 6/2003 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

die Faktoren (Gewichte) der Pixel - in der Mit-
te der gerade Betrachtete — eingetragen, mit
denen die Grauwerte multipliziert werden. Die
Summe dieser Produkte wird (formal) am En-
de durch die Summe aller Gewichte geteilt,
um einen normalisierten Helligkeitswert zu er-
halten. Diese Filtervorschrift wird auch als Fil-
ter-Kernel bezeichnet.

Die vier Helligkeitswerte entsprechen vier
Texture Lookups, die Sie in einem Rendering

Der Sobel-Filter: Diese Technik bewiltigt eine
D3D9-Grafikkarte leicht.

-1 0 [+1
-2 +2
-11 0 |+1

.

Strahlende Welt: Im Glow-Effekt leuchtet die
3D-Szene.

Der Sobel-Filter: Zwei
Filter-Kernel unter-
scheiden sich durch
eine 90-Grad-Rotation.

= E=
B <cB=
e

Einfach schnell: Zweimaliges Filtern reduziert
den Aufwand.

Pass ab einer GeForce-3-Karte erledigen kon-
nen. Dazu verwenden Sie die P-Buffer-Textur,
die die gerenderte Szene enthalt, auf vier
Texture Stages. Die Texturkoordinaten der vier
Stages sind dabei entsprechen um folgende Pi-
xel Offsets verschoben: (-1/0), (1/0), (0/-1) und
(0/1). Beachten Sie, dass Sie die Verschiebung
gemessen in Pixel durch die Auflésung des P-
Buffers teilen miissen, um die tatsiachliche
Translation in Texturkoordinaten zu erhalten.
Die Offsets konnen Sie auch mit Hilfe eines
Vertex Programs berechnen, oder mit den Be-
fehlen giMultiTexCoord2fARB(...) iibergeben —
es sind lediglich 4 * 4 Texturkoordinaten. Das
Bild zeigt das Prinzip dieses Nachbarschafts-
Samplings.

Die Berechnung des Kantenfilters sehen Sie
hier in Pseudo-Notation, wobei tex0..3 die
Farbwerte der Nachbarpixel sind. ¢/ und ¢2
sind temporare RGBA-Vektoren:

t1 = 2*(tex0-tex1);

t2 = 2*(tex2-tex3);

result = 4*[(t1 dot t1)
+ (t2 dot t2)1;

Offensichtlich ist darin kein echter Schwellen-
wert-Vergleich enthalten. Vielmehr skalieren
Sie stark die nicht Bool’schen Resultate der Dif-
ferenzen, um einen ansprechenden Eindruck
zu erhalten.

Das Beispielprogramm vervollstandigt die Re-
gister-Combiner-Einstellungen jeweils mit der
Syntax, wie sie die nVidia-Bibliothek nvParse
verwendet. Um diese Bibliothek aber nicht lin-
ken zu mussen und um von ihr unabhéngig zu
bleiben, nimmt das Beispiel einen etwas holp-
rigen Weg: es stellt die Combiner tiber die Be-
fehle der NV _register_combiner OpenGL Ex-
tension ein.

Mit Direct3D-9-fahigen Grafikkarten (ATI Rade-
on 9700 und GeForce FX) konnen Sie eine Tex-
tur in einem Fragment-Programm mehrfach
samplen (PC Underground 4/03, ab S. 212).
Die Texturkoordinaten Offsets berechnen Sie
am besten in einem Vertex-Programm. So
koénnen Sie den so genannten Sobel-Filter be-
rechnen, den auch die Mustererkennung ver-
wendet, um Kanten in 2D-Bildern zu erken-
nen. Dieser besteht aus einem horizontalen
und einem vertikalen Filter-Kernel, deren Er-
gebnisse durch Maximumbildung verkniipft
werden. Der Sobel-Filter ist dem obigen einfa-
chen Filter deutlich {iberlegen. Neue Grafikkar-
ten berechnen in einem Post-Processing
Schritt den Sobel-Filter vollstandig.

Der letzte Effekt dieser Ausgabe zeigt eine
Glow- oder Leuchttechnik. Diese vermittelt
den Eindruck, dass einzelne Teile der Szene
hell schimmern und leuchten. Das Prinzip ist
einfach: Zuné&chst zeichnen Sie die 3D-Szene

normal in den Backbuffer des Rendertargets.
Die Teile der 3D-Szene, die den Leuchteffekt
besitzen sollen, zeichnen Sie in eine P-Buffer
Textur. Der Trick bei diesem Effekt ist nun,
auf die P-Buffer Textur einen starken Un-
scharfefilter anzuwenden und das dadurch
entstehende Bild auf den Backbuffer Inhalt
zu addieren. Somit hellen die Teile der 3D-
Szene mit Leucht-effekt ihre Umgebung farb-
lich auf.

Der Glow-Effekt

Einen solchen Unscharfefilter fiir die CPU zu
programmieren, ist zwar leicht, jedoch uner-
wiinscht. Erstrebenswert ist eine effiziente Lo-
sung mit Hilfe der Grafikhardware. Den P-Buf-
fer-Inhalt zu kopieren und die zusétzlich ent-
stehenden Textur-Locks zu rendern, wiirde die
Geschwindigkeit massiv einschranken. Um ei-
ne starke Unschérfe zu erzeugen, benotigen
Sie, um einen neuen Farbwertes fiir einen Pi-
xel zu berechnen auch die Farbwerte von einer
n? (n=8) Pixels groen Nachbarschaft. Die
Gewichte der Nachbarpixel kénnen Sie z.B.
mit einer Gauss’schen Glockenfunktion be-
stimmen, um eine Abnahme der Gewichte mit
dem Abstand zum betrachteten Pixel zu errei-
chen.

Zunachst kbnnte man annehmen, Sie wiirden
dazu 8*8=64 Texturzugriffe bendtigen. Gliick-
licherweise ist dem nicht so, denn viele solche
Filter-Operationen lassen sich aufspalten: in
zweimaliges Filtern, mit einer Filtergréfie von
n, also in diesem Beispiel nur acht Nachbarpi-
xeln.

Anschaulich bedeutet dies: als Erstes wenden
Sie einen horizontalen Filter an. Anschlieflend
einen vertikalen Unschérfefilter auf das bereits
gefilterte Bild. Dazu benétigen Sie aufler dem
P-Buffer, der die leuchtenden Teile der 3D-Sze-
ne enthalt einen weiteren P-Buffer, in den Sie
das Ergebnis nach dem ersten Filtervorgang
schreiben und den Sie als Textur, also Quelle,
des zweiten Filterns verwenden.

Um die n=8 Nachbarpixel zu gewichten und
aufzusummieren, benétigen Sie mit einer Di-
rect3D-8-Grafikkarte zwei Renderpasses pro
Filtervorgang, weil Sie nur auf vier Texturen
bzw. Texel pro Pass zugreifen kénnen. Der Zu-
griff erfolgt dabei nach demselben Prinzip wie
im Bild Nachbarschafts Sampling: Sie verwen-
den dieselbe Textur vierfach mit unterschiedli-
chen Texturkoordinaten. Die zwei Werte (ent-
standen aus jeweils 4 Farbwerten) konnen Sie
durch additives Blending mit der Funktion
glBlendFunc(GL_ONE, GL_ONE) aufsummie-
ren.

Mit einer Direct3D-9-Grafikkarte konnen Sie ei-
nen dieser Filtervorgénge in einem Renderpass

durchfiihren, da Sie eine Textur achtmal an be-
liebigen Texels auslesen und die Farbwerte ge-
wichten und aufsummieren kénnen.

Als Notlosung bei dlteren Grafikkarten rendern
Sie jeden Filtervorgang achtmalig. Die Gewich-
tung der einzelnen Nachbarpixel durch die
Verschiebung der Textur erreichen Sie iber
den OpenGL-Farbwert, wenn Sie das Textur
Environment auf GL_MODULATE stellen. Um
die Werte zu summieren, setzen Sie wieder ad-
ditives Blending ein.

Der Quelltext fiir die horizontale Filterung
(screenRect(du,dv) zeichnet ein Quadrat mit
der P-Buffer Textur iiber den gesamten sichtba-
ren Bereich. Die Parameter bezeichnen
dabei die Verschiebung der Texturkoordinaten
in Texeln:

glClearColor (0.0f,0.0f,0.0f,0.0f);
glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

glEnable (GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);

glBindTexture(GL_TEXTURE_2D,
pBuffer->getTexID());
glTexEnvi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE,
GL_MODULATE) ;
float w[]={ 0.5f, 0.4003685f,
0.205556f, 0.0676675F };

for (int i = 0; 1 < 4; i++)
{
glColordf (w[i],w[i],w[i],w[i]);
screenRect(i, 0);
if (i != 0)screenRect(-i, 0);

Einen horizontalen bzw. vertikalen Filterdurch-
gang erreichen Sie mit der DirectX9-
Generation von Grafikkarten in einem Rende-
ring Pass. Das dazugehdrige Fragment Pro-

gram sieht folgendermafien aus:
OUTPUT color = result.color;
TEMP color0O, colori, color2, color3,

[T 1] [T 1]

|
Gewichte ’—‘

Pixel gefiltert

HEE BEEEEE

vier Texturen pro Pass zugreifen kdnnen.

Blurring: Das Verfahren benétigt mit D3D8-Hardware zwei Renderpasses pro Filtervorgang, weil nur

color4, color5, color6;

ALIAS temp = coloro0;

PARAM weights = { 0.0676675, 0.205556,
0.4003685, 0.5 };

TEX color0, fragment.texcoord[0 1,
texture[0], 2D;

TEX color6, fragment.texcoord[6 1,
texture[0], 2D;

MUL temp, color0, weights.w;
MAD temp, colori, weights.z, temp;

MAD result.color, color6, weights.x,
temp;
END

Allgemein gilt so, dass Sie mit weniger Render-
passes eine hohere Genauigkeit erhalten, die
nicht nur theoretisch, sondern auch sichtbar
ist. Der Grund: Die Register-Combiner und die
Fragment-Programme arbeiten intern mit ho-
herer Prazision, letztere sogar mit Floating
Point Genauigkeit.

Beim Aufsummieren durch additives Blending
hingegen wird mit 8 Bit pro Farbkomponente
gerechnet, was einen deutlichen Datenverlust
bedeuten kann.

Um einen guten Glow Effekt zu erhalten, miis-
sen Sie keine hohe Auflosung des P-Buffers
wahlen. Im Gegenteil: eine niedrigere Auflo-

BN oot

| l 7] ‘ Gewichte

Pixel gefiltert

Blurring: Und so arbeitet das Verfahren mit

D3D9-Grafikkarten.

sung verstdrkt die Leuchtbereiche und berech-
net den Effekt schneller. Bei zu geringer Auflo-
sung storen Aliasing Effekte, die sogar dazu
fithren konnen, dass kleinere leuchtende Ob-
jekte libersprungen werden. Deshalb experi-
mentieren Sie am besten, um eine geeignete
Auflosung zu finden.

Eine bessere Kontrolle iiber die Leuchteffekte
erreichen Sie, indem Sie nicht einen Glow
Effekt fiir den ganzen Bildschirm, sondern se-
lektiv fiir einzelne Bereiche oder 3D-Objekte
berechnen. Dieser zusétzliche Aufwand lohnt
sich bei komplexeren Leuchteffekten. cet

Verweise
www.dachsbacher.de/pcu
www.ati.com
www.nvidia.com

PC Magazin 6/2003 : www.pc-magazin.de

