
Grafikkarten schaffen es mittlerweile, zu-

nehmend komplexe Szenen immer rea-

listischer darzustellen. Das verbessert die Geo-

metrie, Texturierung und Beleuchtung einer

virtuellen Szene. Nicht nur das Rendering einer

Szene kann den Betrachter überzeugend be-

eindrucken. Eine wichtige Rolle spielen auch

die so genannten Post-Processing-Effekte. Sol-

che Effekte fügen Sie dem Bild nach dem Ren-

dering hinzu. Diese Art der Nachbearbeitung

kann für viele Effekte auch mit Hilfe der Grafik-

karte erfolgen. Einige Beispiele, manche mit

Praxisrelevanz, andere eher aus der akademi-

schen Ecke, lernen Sie in dieser Ausgabe ken-

nen und programmieren. Für einige Effekte ge-

nügen Grafikkarten der Direct3D-8-Klasse wie

nVidia-GeForce-3 und GeForce-4 oder ATI-Ra-

deon-8500/9000. Aber Sie sehen auch, wie viel

einfacher und effizienter es ist, solche Effekte

auf den Grafikkarten der neuesten Generation,

also der ATI-Radeon-9700 und nVidia-GeForce-

FX, zu programmieren.

Post-Processing allgemein

Wie erwähnt, werden Post-Processing Effekte

im Nachhinein zum Rendering hinzugefügt,

oder dieses wird modifiziert. Um aber jeden

Pixel des Bildschirms zu modifizieren, müssen

Sie auf dessen Farb- und Alpha-Wert zugreifen.

Das bedeutet, dass Sie eine Textur benötigen,

in die Sie die 3D-Szene zeichnen. Dies können

Sie prinzipiell auf zwei Arten erreichen: entwe-

der Sie rendern die Szene in den Backbuffer

(wie bei jedem herkömmlichen Rendering-

Vorgang), oder Sie rendern direkt in eine Tex-

tur. Letzteres, auch die effektivste Variante, er-

reichen Sie mit den so genannten P-Buffers

(PC Underground 3/03, ab. S.168). Im Beispiel-

Programm zu dieser Ausgabe ist die P-Buffer

Klasse enthalten, die Sie wie folgt einsetzen.

Ein P-Buffer (Pixel-Buffer) ist ein Speicherbe-

reich, den Sie wie den normalen Frame-Buffer

als Rendertarget, d.h. um dort etwas zu ren-

dern, verwenden können. Ein P-Buffer kann ei-

nen eigenen Stencil und Depth Buffer besitzen

und verschiedene Farbformate unterstützen.

Sein großer Vorteil: Sie können ihn für ein an-

deres Rendertarget (wie für Frame- oder

P-Buffer) als Textur verwenden. Dies bedeutet:

Sie können Ihre 3D-Szene in eine dynamische

Textur (den P-Buffer) zeichnen und anschlie-

ßend mit dieser Textur Post-Processing Effekte

anwenden. Dabei kann die Auflösung des P-

Buffers der des Frame-Buffers entsprechen,

muss aber nicht.

Die Verwendung der P-Buffer Klasse CPBuffer

ist denkbar einfach: dem Konstruktor überge-

ben Sie die Auflösung des P-Buffers in X- und

Y-Richtung sowie den Device Context des

OpenGL-Fensters, womit ein P-Buffer mit 32

Bit Farbtiefe und einem 16 Bit Depth Buffer an-

PROGRAMMIERUNG : PC UNDERGROUND

188

PC
 M

ag
az

in
 6

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Entlocken Sie Ihrer Grafikkarte

ungeahnte Effekte wie

Dithering, Kantenfilter und

Leuchtspuren. Bereichern Sie

Ihre Rendering- Szenen mit

Post-Processing in Echtzeit per

OpenGL. Mit der Macht von

Bildern spielen Sie mit den

Gefühlen des Betrachters.

Carsten Dachsbacher

Echtzeit-Image-Post-Processing mit OpenGL

Bewegende
Botschaftenw

or
ks

ho
p

Szene: Mit diesem Bild testen Sie alle
Post-Processing-Effekte.

gelegt wird. Um den P-Buffer als Rendertarget

zu aktivieren, rufen Sie die Methode makeCur-

rent() auf. Diese verwendet intern die Funkti-

on wglMakeCurrent(...), mit der Sie auch den

Frame-Buffer wieder als Rendertarget aktivie-

ren. Die Parameter sind dabei der Device Con-

text und OpenGL Rendering Context des Fens-

ters.

So verwenden Sie nun einen P-Buffer als Tex-

tur: Zunächst wählen Sie eine OpenGL Textur

mit Hilfe einer ID aus. Diese ID legt der Kon-

struktor bereits für Sie an. Im Anschluss bin-

den Sie den P-Buffer an diese Textur ID:

glBindTexture(GL_TEXTURE_2D,
pBuffer->getTexID());

pBuffer->bind();

Jetzt können Sie die Textur wie üblich in

OpenGL verwenden. Bevor Sie allerdings wie-

der den Inhalt des P-Buffers modifizieren wol-

len, müssen Sie den P-Buffer wieder von der

Textur ID lösen. Dies übernimmt die Methode

release().

Dithering

Der erste hier vorgestellte Post-Processing

Effekt ist mehr Spielerei und Beispiel:

Dithering. Dieses Verfahren stellt ein Bild mit

reduzierter Farbanzahl dar (im Beispiel

schwarz und weiß), wobei es Muster verwen-

det. Dies soll den Eindruck von Farben oder

Graustufen erwecken. Im Folgenden erfahren

Sie, wie Sie Ihre 3D-Szenen in Echtzeit per

Schwarz-Weiß-Dithering darstellen.

Bei vielen Dithering-Verfahren ist die Auflö-

sung des resultieren Bildes höher als die des

Ausgangsbildes. Solche Verfahren lassen sich

mit dem Einsatz geeigneter Texturen leicht mit

der Grafikkarte umsetzen. Andere Verfahren,

wie z.B. das Floyd-Steinberg Verfahren, bear-

beiten das Bild Pixel für Pixel und brauchen ei-

nen Übertrag, also ein gemerktes Zwischenre-

sultat. Das Verfahren lässt sich somit nicht auf

der Grafikkarte implementieren.

Das Beispiel verwendet ein einfaches Verfah-

ren, das aus einem 32-Bit Farbbild mit Hilfe der

nVidia Register Combiner (gewissermaßen

das OpenGL Pendant zu den Direct3D acht Pi-

xel Shaders) ein Schwarz-Weiß-Bild erzeugt.

Die Register Combiner bestehen aus mehreren

(abhängig vom GeForce Modell) General

Combiners, die mit komponentenweiser Mul-

tiplikation, Skalarprodukten oder Summen

operieren können und einem Final Combiner,

der aus den Zwischenergebnissen den endgül-

tigen Farbwert bestimmt. Auf die Ein- und Aus-

gabewerte eines Combiners können Sie so ge-

nannte Mappings anwenden. Mappings stre-

cken, stauchen oder invertieren den

Wertebereich und ändern Vorzeichen (PC Ma-

gazin Spezial 27).

So bearbeiten Sie jeden Pixel: Zunächst be-

rechnen Sie aus dem Farbwert eine Helligkeit.

Dabei können Sie die unterschiedliche perzep-

tive Wahrnehmung von rot, grün und blau

durch unsere Augen berücksichtigen, indem

Sie die Werte mit 0.3, 0.59 und 0.11 (in der

Summe 100 Prozent) gewichten und aufsum-

mieren. Dazu bilden Sie aus dem Farbwert der

Textur und einem konstanten Vektor (0.3, 0.59,

0.11, 0.0) ein Skalarprodukt. Das Resultat spei-

chern Sie in allen Komponenten des Zielregis-

ters. An dieser Stelle setzen Sie eine zweite

Graustufen-Textur ein. In ihr speichern Sie in

jedem Texel einen Zufallswert zwischen 0 und

1. Den Zufallswert, dessen Intervall Sie von

[0;1] im Register Combiner auf [-0.5; 0.5] ab-

bilden, addieren Sie zum Wert des Skalarpro-

duktes und verwenden das Resultat als Alpha-

Wert, der letztendlich zum Zeichnen verwen-

det wird.

Zusammengefasst: Der erste General Combi-

ner berechnet den Grauwert mit Hilfe des Ska-

larproduktes und damit den Alpha-Wert und

setzt die RGB-Werte auf 1. Der Final Combiner

lässt den bereits berechneten RGBA Vektor

durch.

Was haben Sie damit erreicht? Vom berechne-

ten Grauwert addieren Sie eine Zufallszahl zwi-

schen -0.5 und 0.5 und erweitern das Wertein-

tervall des Alpha-Werts auf [-0.5, 1.5]. Um die-

sen Post-Processing Effekt zu verwenden,

löschen Sie den Frame-Buffer mit schwarzem

Hintergrund und schalten vor dem Rendering

den Alpha-Test ein, so dass nur Pixel gezeich-

net werden, deren Alpha-Wert größer als 0.5

ist. Dann schalten Sie die Register Combiner

mit dem oben beschriebenen Setup ein und

zeichnen die gerenderte Szene (enthalten in

der P-Buffer Textur) mit zwei Dreiecken über

den ganzen sichtbaren Bereich. Damit sehen

Sie den Dithering Effekt.

Kantenfilter

Der zweite Effekt ist ein aus Bildbearbeitungs-

programmen bekannter Bild-Filter, der Kanten

in 2D-Bildern hervorhebt. Im Gegensatz zum

ersten Beispiel verwenden Sie diesen Effekt in

der Praxis wie beim Non-Photorealistic Rende-

ring oder Toon Shading.

Kantenfilter untersuchen die Nachbar-Pixel je-

des Pixels im Bild, bzw. die Differenz ihrer Hel-

ligkeitswerte. Überschreitet die Differenz be-

tragsmäßig einen vorher festgelegten Schwell-

wert, so nimmt man an, dass es sich beim

betrachteten Pixel um den Teil einer Kante

handelt. Zunächst stellen Sie sich einen einfa-

chen Kantenfilter vor, der nur vier Nachbar Pi-

xel betrachtet, und den Sie mit den Register

Combiners berechnen. Es wird dazu die Diffe-

renz der Helligkeiten des oben und unten,

bzw. links und rechts benachbarten Pixels be-

nötigt. Das Bild stellt einen Bildfilter dar, wie er

in der Praxis üblich ist: in den Kästchen sind

189

PC
 M

ag
az

in
 6

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Quelltexte sowie fertig übersetzte Routinen > CD
Praxis/Programmierung/PC Underground

Dithering: Frei nach Dürer stellen Sie die 3D-
Szene schwarz-weiß dar.

Kantendetektion: Dies
zeigt einen einfachen
Filter-Kernel.

Nachbarschafts-Sampling: So arbeitet das
Verfahren mit D3D8-Grafikkarten.

Kantenfilter: Die Ränder heben Sie mit Register
Combiners hervor.

die Faktoren (Gewichte) der Pixel – in der Mit-

te der gerade Betrachtete – eingetragen, mit

denen die Grauwerte multipliziert werden. Die

Summe dieser Produkte wird (formal) am En-

de durch die Summe aller Gewichte geteilt,

um einen normalisierten Helligkeitswert zu er-

halten. Diese Filtervorschrift wird auch als Fil-

ter-Kernel bezeichnet.

Die vier Helligkeitswerte entsprechen vier

Texture Lookups, die Sie in einem Rendering

Pass ab einer GeForce-3-Karte erledigen kön-

nen. Dazu verwenden Sie die P-Buffer-Textur,

die die gerenderte Szene enthält, auf vier

Texture Stages. Die Texturkoordinaten der vier

Stages sind dabei entsprechen um folgende Pi-

xel Offsets verschoben: (-1/0), (1/0), (0/-1) und

(0/1). Beachten Sie, dass Sie die Verschiebung

gemessen in Pixel durch die Auflösung des P-

Buffers teilen müssen, um die tatsächliche

Translation in Texturkoordinaten zu erhalten.

Die Offsets können Sie auch mit Hilfe eines

Vertex Programs berechnen, oder mit den Be-

fehlen glMultiTexCoord2fARB(...) übergeben –

es sind lediglich 4 * 4 Texturkoordinaten. Das

Bild zeigt das Prinzip dieses Nachbarschafts-

Samplings.

Die Berechnung des Kantenfilters sehen Sie

hier in Pseudo-Notation, wobei tex0..3 die

Farbwerte der Nachbarpixel sind. t1 und t2

sind temporäre RGBA-Vektoren:

t1 = 2*(tex0-tex1);
t2 = 2*(tex2-tex3);
result = 4*[(t1 dot t1)

+ (t2 dot t2)];

Offensichtlich ist darin kein echter Schwellen-

wert-Vergleich enthalten. Vielmehr skalieren

Sie stark die nicht Bool’schen Resultate der Dif-

ferenzen, um einen ansprechenden Eindruck

zu erhalten.

Das Beispielprogramm vervollständigt die Re-

gister-Combiner-Einstellungen jeweils mit der

Syntax, wie sie die nVidia-Bibliothek nvParse

verwendet. Um diese Bibliothek aber nicht lin-

ken zu müssen und um von ihr unabhängig zu

bleiben, nimmt das Beispiel einen etwas holp-

rigen Weg: es stellt die Combiner über die Be-

fehle der NV_register_combiner OpenGL Ex-

tension ein.

Mit Direct3D-9-fähigen Grafikkarten (ATI Rade-

on 9700 und GeForce FX) können Sie eine Tex-

tur in einem Fragment-Programm mehrfach

samplen (PC Underground 4/03, ab S. 212).

Die Texturkoordinaten Offsets berechnen Sie

am besten in einem Vertex-Programm. So

können Sie den so genannten Sobel-Filter be-

rechnen, den auch die Mustererkennung ver-

wendet, um Kanten in 2D-Bildern zu erken-

nen. Dieser besteht aus einem horizontalen

und einem vertikalen Filter-Kernel, deren Er-

gebnisse durch Maximumbildung verknüpft

werden. Der Sobel-Filter ist dem obigen einfa-

chen Filter deutlich überlegen. Neue Grafikkar-

ten berechnen in einem Post-Processing

Schritt den Sobel-Filter vollständig.

Der letzte Effekt dieser Ausgabe zeigt eine

Glow- oder Leuchttechnik. Diese vermittelt

den Eindruck, dass einzelne Teile der Szene

hell schimmern und leuchten. Das Prinzip ist

einfach: Zunächst zeichnen Sie die 3D-Szene

normal in den Backbuffer des Rendertargets.

Die Teile der 3D-Szene, die den Leuchteffekt

besitzen sollen, zeichnen Sie in eine P-Buffer

Textur. Der Trick bei diesem Effekt ist nun,

auf die P-Buffer Textur einen starken Un-

schärfefilter anzuwenden und das dadurch

entstehende Bild auf den Backbuffer Inhalt

zu addieren. Somit hellen die Teile der 3D-

Szene mit Leucht-effekt ihre Umgebung farb-

lich auf.

Der Glow-Effekt

Einen solchen Unschärfefilter für die CPU zu

programmieren, ist zwar leicht, jedoch uner-

wünscht. Erstrebenswert ist eine effiziente Lö-

sung mit Hilfe der Grafikhardware. Den P-Buf-

fer-Inhalt zu kopieren und die zusätzlich ent-

stehenden Textur-Locks zu rendern, würde die

Geschwindigkeit massiv einschränken. Um ei-

ne starke Unschärfe zu erzeugen, benötigen

Sie, um einen neuen Farbwertes für einen Pi-

xel zu berechnen auch die Farbwerte von einer

n2 (n=8) Pixels großen Nachbarschaft. Die

Gewichte der Nachbarpixel können Sie z.B.

mit einer Gauss’schen Glockenfunktion be-

stimmen, um eine Abnahme der Gewichte mit

dem Abstand zum betrachteten Pixel zu errei-

chen.

Zunächst könnte man annehmen, Sie würden

dazu 8*8=64 Texturzugriffe benötigen. Glück-

licherweise ist dem nicht so, denn viele solche

Filter-Operationen lassen sich aufspalten: in

zweimaliges Filtern, mit einer Filtergröße von

n, also in diesem Beispiel nur acht Nachbarpi-

xeln.

Anschaulich bedeutet dies: als Erstes wenden

Sie einen horizontalen Filter an. Anschließend

einen vertikalen Unschärfefilter auf das bereits

gefilterte Bild. Dazu benötigen Sie außer dem

P-Buffer, der die leuchtenden Teile der 3D-Sze-

ne enthält einen weiteren P-Buffer, in den Sie

das Ergebnis nach dem ersten Filtervorgang

schreiben und den Sie als Textur, also Quelle,

des zweiten Filterns verwenden.

Um die n=8 Nachbarpixel zu gewichten und

aufzusummieren, benötigen Sie mit einer Di-

rect3D-8-Grafikkarte zwei Renderpasses pro

Filtervorgang, weil Sie nur auf vier Texturen

bzw. Texel pro Pass zugreifen können. Der Zu-

griff erfolgt dabei nach demselben Prinzip wie

im Bild Nachbarschafts Sampling: Sie verwen-

den dieselbe Textur vierfach mit unterschiedli-

chen Texturkoordinaten. Die zwei Werte (ent-

standen aus jeweils 4 Farbwerten) können Sie

durch additives Blending mit der Funktion

glBlendFunc(GL_ONE, GL_ONE) aufsummie-

ren.

Mit einer Direct3D-9-Grafikkarte können Sie ei-

nen dieser Filtervorgänge in einem Renderpass

PROGRAMMIERUNG : PC UNDERGROUND

190

PC
 M

ag
az

in
 6

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Der Sobel-Filter: Zwei
Filter-Kernel unter-
scheiden sich durch
eine 90-Grad-Rotation.

Strahlende Welt: Im Glow-Effekt leuchtet die
3D-Szene.

Einfach schnell: Zweimaliges Filtern reduziert
den Aufwand.

Der Sobel-Filter: Diese Technik bewältigt eine
D3D9-Grafikkarte leicht.

durchführen, da Sie eine Textur achtmal an be-

liebigen Texels auslesen und die Farbwerte ge-

wichten und aufsummieren können.

Als Notlösung bei älteren Grafikkarten rendern

Sie jeden Filtervorgang achtmalig. Die Gewich-

tung der einzelnen Nachbarpixel durch die

Verschiebung der Textur erreichen Sie über

den OpenGL-Farbwert, wenn Sie das Textur

Environment auf GL_MODULATE stellen. Um

die Werte zu summieren, setzen Sie wieder ad-

ditives Blending ein.

Der Quelltext für die horizontale Filterung

(screenRect(du,dv) zeichnet ein Quadrat mit

der P-Buffer Textur über den gesamten sichtba-

ren Bereich. Die Parameter bezeichnen

dabei die Verschiebung der Texturkoordinaten

in Texeln:

glClearColor (0.0f,0.0f,0.0f,0.0f);
glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);

glEnable (GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);

glBindTexture(GL_TEXTURE_2D,
pBuffer->getTexID());

glTexEnvi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE,
GL_MODULATE);

float w[]={ 0.5f, 0.4003685f,
0.205556f, 0.0676675f };

for (int i = 0; i < 4; i++)
{
glColor4f(w[i],w[i],w[i],w[i]);

screenRect(i, 0);
if (i != 0)screenRect(-i, 0);

}

Einen horizontalen bzw. vertikalen Filterdurch-

gang erreichen Sie mit der DirectX9-

Generation von Grafikkarten in einem Rende-

ring Pass. Das dazugehörige Fragment Pro-

gram sieht folgendermaßen aus:
OUTPUT color = result.color;
TEMP color0, color1, color2, color3,

color4, color5, color6;
ALIAS temp = color0;
PARAM weights = { 0.0676675, 0.205556,
0.4003685, 0.5 };

TEX color0, fragment.texcoord[0],
texture[0], 2D;
....
TEX color6, fragment.texcoord[6],
texture[0], 2D;

MUL temp, color0, weights.w;
MAD temp, color1, weights.z, temp;
...
MAD result.color, color6, weights.x,
temp;
END

Allgemein gilt so, dass Sie mit weniger Render-

passes eine höhere Genauigkeit erhalten, die

nicht nur theoretisch, sondern auch sichtbar

ist. Der Grund: Die Register-Combiner und die

Fragment-Programme arbeiten intern mit hö-

herer Präzision, letztere sogar mit Floating

Point Genauigkeit.

Beim Aufsummieren durch additives Blending

hingegen wird mit 8 Bit pro Farbkomponente

gerechnet, was einen deutlichen Datenverlust

bedeuten kann.

Um einen guten Glow Effekt zu erhalten, müs-

sen Sie keine hohe Auflösung des P-Buffers

wählen. Im Gegenteil: eine niedrigere Auflö-

sung verstärkt die Leuchtbereiche und berech-

net den Effekt schneller. Bei zu geringer Auflö-

sung stören Aliasing Effekte, die sogar dazu

führen können, dass kleinere leuchtende Ob-

jekte übersprungen werden. Deshalb experi-

mentieren Sie am besten, um eine geeignete

Auflösung zu finden.

Eine bessere Kontrolle über die Leuchteffekte

erreichen Sie, indem Sie nicht einen Glow

Effekt für den ganzen Bildschirm, sondern se-

lektiv für einzelne Bereiche oder 3D-Objekte

berechnen. Dieser zusätzliche Aufwand lohnt

sich bei komplexeren Leuchteffekten. : et

191

PC
 M

ag
az

in
 6

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e
Verweise
www.dachsbacher.de/pcu
www.ati.com
www.nvidia.com

Blurring: Das Verfahren benötigt mit D3D8-Hardware zwei Renderpasses pro Filtervorgang, weil nur
vier Texturen pro Pass zugreifen können.

Blurring: Und so arbeitet das Verfahren mit
D3D9-Grafikkarten.

