PROGRAMMIERUNG :

PC Magazin 7/2003 : www.pc-magazin.de

Die Direct-3D-Komponente
des vor kurzem vorgestellten
DirectX 9 bietet eine
einheitliche Schnittstelle, um
Grafikbeschleuniger zu
programmieren.

Carsten Dachsbacher

Schichtenmodell: Die Bestandteile beim
Rendering von 3D-Objekten.

PC UNDERGROUND

Direct-3D-9

Kleine Schritte zur
grol3en Grafik

Das vor kurzem erschienene DirectX 9

enthdlt — neben den aktualisierten Kom-
ponenten DirectSound, DirectMusic etc. —
auch ein iberarbeitetes Direct3D-Interface, das
die neueste Grafikhardware nutzen kann.
Grund genug, Direct3D9 einen Platz in der Rei-
he der PC-Underground-Artikel zu reservieren.
Wir zeigen lhnen in dieser Ausgabe, wie Sie
Direct3D9 sowohl fiir eine Fenster- als auch
Vollbild-Anwendung korrekt initialisieren und
verwenden. Damit legen Sie die Grundlage fiir
weitere Programme und Grafikeffekte.
Fiir eine Direct3D-Anwendung benétigen Sie
zundchst ein normales Windows-Fenster. Die-
ses konnen Sie mit den MFC (Microsoft Foun-
dation Classes) anlegen, wenn Sie nicht ein-
fach die Win32-API verwenden wollen. Wir
haben den zweiten Weg gewdhlt, da dieser
einfacher zu tiberschauen ist und weniger
Overhead verursacht. Somit entsteht ein einfa-
ches Framework fiir Direct3D-Anwendungen.

Fenster auf

Wir zeigen lhnen hier die vollstdndige Win-
Main-Funktion des Programms, in der Sie zu-
nachst eine eigene Fensterklasse anlegen. Da-
zu flllen Sie die Felder der WNDCLASSEX-
Struktur aus. Darin sind alle Informationen
uiber den Stil, Cursor, Icon usw. der Fensterklas-
se enthalten. Unter anderem missen Sie auch

einen Zeiger auf die Window-Prozedure ange-
ben. Diese Funktion bearbeitet alle Nachrichten
wie Mausklicks und Tastatureingaben, die an
ein Fenster verschickt werden. Das Beispielpro-
gramm fragt diesen Klick auf den Schliessen-
Button des Fensters oder ein Dricken der
[Esc]-Taste ab und verschickt gegebenenfalls
eine WM_QUIT-Nachricht. Die Fensterklasse re-
gistrieren Sie dann mit RegisterClassEx:

int WINAPI WinMain(

HINSTANCE hInst,
HINSTANCE hPrevInst,

LPSTR commandLine,
int commandShow)
{
WNDCLASSEX wndClass;
MSG msg;

// wndClass Struktur ausfillen
wndClass.lpszClassName = "PCUvsD3D9";
wndClass.lpfnWndProc = WindowProc;

/| Fensterklasse registrieren
if(RegisterClasskEx(&wndClass)==0)
return E_FAIL;

Wenn die Fensterklasse registriert ist, erzeugen
Sie Thr Direct3D-Fenster und bringen es auf
den Bildschirm:

gHWND = CreateWindowEx (

NULL, "PCUvsD3D9", "Direct3D9",
WS_OVERLAPPEDWINDOW | WS_VISIBLE,

Quelltexte sowie fertig iibersetzte Routinen > CD
Praxis/Programmierung/PC Underground

0, 0, 640, 480, NULL, NULL, hInst,
NULL);

if(gHWND == NULL) return E_FAIL;

ShowWindow(gHWND, commandShow);
UpdateWindow(gHWND);

Mit den folgenden Direct3D-Programmteilen
verbinden Sie drei Funktionen, die initialiseren,
rendern und die Ressourcen freigeben: initia-
lize3D(), render3D() und shutdown3D(). Die-
se finden Sie im letzten Teil der WinMain-Funk-
tion, die fortwéhrend die Rendering-Funktion
aufruft, bis Sie das Programm beenden:

// Initialisierung
initialize3D();

ZeroMemory(&msg, sizeof(msg));

// render3D(), bis zum Programmende
while(msg.message != WM_QUIT)

{
if(PeekMessage(&msg, NULL, O, O,
PM_REMOVE))
{

TranslateMessage(&msg);
DispatchMessage(&msg);
} else
render3D();
}

// und aufraumen
shutdown3d () ;

UnregisterClass("MY_WINDOWS_CLASS",
wndClass.hInstance);

return msg.wParam;

}

Die obige WinMain-Funktion erzeugt ein Fens-
ter. Fir eine Vollbild-Anwendung ist an dieser
Stelle nur ein anderer CreateWindowEx-Auf-
ruf notwendig:

gHWND = CreateWindowEx (
NULL, "PCUvsD3D9", "Direct3D9",

WS_POPUP |WS_SYSMENU |WS_VISIBLE,
0, 0, 640, 480, NULL, NULL, hInst,
NULL);

Direct3D im Fenster

Bei der Initialisierung von Direct3D mit der je-
weiligen init3d()-Funktion sind die Unterschie-
de von Fenster- und Vollbild-Betrieb schon gro-
Ber. Deshalb initialisieren Sie zuerst Direct3D
fir den Fenstermodus und anschlieend fiir
Vollbildanwendungen.

Als erstes erzeugen Sie sich mit Direct3DCrea-
te9(...) eine Instanz eines IDirect3D-Objekts.
Der Parameter lautet dabei immer
D3D_SDK_VERSION. Dies dient dazu, fiir das
Rendering Direct3D-Objekte zu erzeugen, de-
ren Fahigkeiten auszulesen, Grafikmodi aufzu-
listen und die Parameter einzustellen. Achten

Rendering Pipeline: Nach diesem Schema arbeitet jeder Grafikbeschleuniger. Das aktuelle DirectX9
bleibt allerdings nur der neuesten Grafikhardware vorbehalten.

Sie darauf, Fehler abzufragen, um einen Pro-
grammabsturz zu vermeiden. In unserem Bei-
spielcode iibernimmt dies die fiktive Funktion
error():

LPDIRECT3D9 pD3D = NULL;
LPDIRECT3DDEVICE9 pD3DDevice = NULL;

pD3D = Direct3DCreate9
(D3D_SDK_VERSION);

if (pD3D == NULL) error();

Da Sie im Fensterbetrieb keinen neuen Grafik-
modus festlegen, lesen Sie die Parameter des
aktuellen aus. Diese sind neben Breite, Hohe
und Bildwiederholfrequenz ein Format-Para-
meter, alles verpackt in eine D3DDISPLAYMO-
DE-Struktur. Der Format-Parameter enthélt z.B.
die Farbtiefe.

D3DDISPLAYMODE dm;

if(FAILED(
pD3D->GetAdapterDisplayMode (
D3DADAPTER_DEFAULT, &dm)

))
error();
Jetzt priifen Sie, ob das Direct3D-Gerat (Stan-
dard Device, identifiziert durch D3DADAP-
TER_DEFAULT) die Programmanforderungen
erfiillen kann wie z.B. eine bestimmte Z-Buf-
fer-Genauigkeit. Solche Format bezogenen De-
tails fragen Sie mit CheckDeviceFormat ab:

HRESULT hr;

hr = pD3D->CheckDeviceFormat (
D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,
dm.Format, D3DUSAGE_DEPTHSTENCIL,
D3DRTYPE_SURFACE, D3DFMT_D16);

if (hr==D3DERR_NOTAVAILABLE) error();

Der zweite Parameter (D3DDEVTYPE HAL)
steht fiir ein Hardware beschleunigtes Direct-
3D-Device. Sie konnten ihn z.B. durch
D3DDEVTYPE REF ersetzen, um den Softwa-
re Referenz Rasterizer zu verwenden.

Die Féhigkeiten einer Grafikkarte, die so ge-
nannten Caps (Capabilities) fassen Sie in einer
D3DCAPS9-Struktur zusammen. Darin sind al-

le Features enthalten, deren umfangreiche Lis-
te im DirectX9-SDK dokumentiert ist.

D3DCAPS9 caps;

if(FAILED(
pD3D->GetDeviceCaps (
D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
&caps

))

error();

Die weiterhin benétigten Caps beschreiben, ob
die Grafikkarte Vertex Processing (also Trans-
formation, Beleuchtung usw.) in Hard- oder
Software ausfiihrt. Diese Information verwen-
den Sie, um die Behaviour Flags zu setzen:

DWORD flags;

if(caps.VertexProcessingCaps != 0)
flags |=
D3DCREATE_HARDWARE_VERTEXPROCESSING;
else
flags |=
D3DCREATE_SOFTWARE_VERTEXPROCESSING;

Als letzte Aufgabe der Initialisierung erzeugen
Sie das Direct3D-Device. Dazu benétigen Sie
noch die so genannten Presentation Parame-
ters. Diese beschreiben z.B. die Anzahl der
Backbuffers und deren Format oder das Z-Buf-
fer-Format. Im Falle des Fensterbetriebs, miis-
sen Sie nicht alle Parameter setzen:

D3DPRESENT_PARAMETERS pp;

Direct3D-Vollbild

Die Initialisierung eines Vollbild-Direct3D-
Modus unterscheidet sich prinzipiell in
einem Punkt: Sie sind nicht darauf angewie-
sen, den gerade aktuellen Grafikmodus des
Desktops zu verwenden, sondern Sie konnen
sich einen Modus aussuchen. Dazu fordern
Sie eine Liste aller unterstiitzten Grafikmodi
an, die eine D3DDISPLAYMODE-Struktur
beschreibt. Die Anzahl der Modi (hier mit 32-
Bit-Farbtiefe, bestimmt durch D3DFMT _
X8R8GSBS):

PC Magazin 7/2003 : www.pc-magazin.de

PC Magazin 7/2003 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

1 1
0__—

" .2 B~ /2

3

D3DPT_LINELIST

0 2 5

D3DPT_TRIANGLELIST D3DPT_TRIANGLESTRIP

D3DPT_LINESTRIP

1 Auswahl: Die
Direct3D-Rendering
Primitive berechnen
Sie mit vergleichs-
% weise einfacher
D3DPT_TRIANGLEFAN Matrizen-

Mathematik.

(X}

0 3

¢iiDirect3Dg

Render States: einfaches Modifizieren des
Rendering

int nMaxModes =
pD3D->GetAdapterModeCount (
D3DADAPTER_DEFAULT,
D3DFMT_X8R8G8BS8) ;

Jetzt tiberpriifen Sie alle nMaxModes, bis Sie
einen gewiinschten gefunden haben. Hierzu
priifen Sie fiir jeden Modus die Breite, Hohe,
Bildwiederholfrequenz und die Format-Flags:

D3DDISPLAYMODE dm;
bool foundMode = false;

if (foundMode == false)
// kein passender Modus gefunden
exit();

Der letzte Aspekt, den Sie beim Vollbildbetrieb
noch beachten miissen, ist die Abfrage, ob fiir
den gewéhlten Grafikmodus Hardware-Be-
schleunigung zur Verfiigung steht. Die ersten
beiden Parameter bezeichnen dabei wie ge-
habt das Direct3D-Device, gefolgt von den For-
maten fiir Frame- und Back-Buffer und einem
FALSE fur Nicht-Fenster-Betrieb.

if (FAILED(
pD3D->CheckDeviceType (
D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
D3DFMT_X8R8G8BS. . .

Der Rest der Initialisierung, d.h. die Uberprii-
fung der Caps, machen Sie so wie zuvor be-
schrieben.

Direct3D-Shutdown

Der Vollstandigkeit halber zeigen wir [hnen an
dieser Stelle, wie Sie Direct3D wieder korrekt
verlassen. Dies beschrénkt sich lediglich auf
zwei Aufrufe, die das Direct3D-Device und Ob-
jekt freigeben:

void shutdown3D()

Nach der Initialisierung kénnen Sie sich nun
endlich der Rendering Schleife lhres Pro-
gramms widmen, die Sie in der render3D()-
Funktion implementieren. Diese ist fest nach
Schema aufgebaut: Als erstes l6schen Sie den
Frame-, Depth- und/oder Stencil-Buffer, je nach
dem, was Sie fiir das Device angefordert ha-
ben. Wenn Sie jeweils den ganzen Buffer 16-
schen wollen, sind die ersten beiden Parame-
ter 0 bzw. NULL. Welcher Buffer betroffen ist,
legen Sie im dritten Parameter durch eine
Oder-Verkniipfung der D3DCLEAR-Flags fest.
Die Farb-, Tiefen- und Stencil-Werte, welche
die Buffers beschreiben, bilden die letzten drei
Parameter:

pD3DDevice->Clear(0, NULL,
D3DCLEAR_TARGET | DBDCLEAR_ZBUFFER,
D3DCOLOR_COLORVALUE(0, 1, 0, 1),
1.0f, 0);

Alle folgenden Rendering-Vorgénge befinden
sich zwischen den BeginScene- und EndSce-
ne-Aufrufen:

pD3DDevice->BeginScene();
// Rendering !
pD3DDevice->EndScene();

Zuletzt bringen Sie den Inhalt des Backbuffers,
also das Resultat des Renderings auf den Bild-
schirm. Da Sie auch hier jeweils den ganzen
Buffer sehen wollen, sind alle Parameter
NULL:

pD3DDevice->Present
(NULL, NULL, NULL, NULL);

Transformationen

Fiir das Rendering benétigen Sie Transforma-
tionen, die Sie Uiber die SetTransform-Metho-
de Thres Direct3D-Device setzen. Es gibt eine
Transformation (definiert durch eine 4x4
Matrix) fiir die 3D-2D-Projektion (D3DTS_PRO-
JECTION), eine Kamera-Abbildung (D3DTS_
VIEW) und die so genannte World-Transfor-
mation (D3DTS_WORLD), die die Transforma-
tion eines Objektes in den World Space angibt.
Zwar gibt es mehrere dieser World Matrizen,
um Vertex Blending bei Animationen zu ver-
wenden, doch bleibt das fiir unseren Einsatz
zunéchst nebensachlich. Die Transformatio-
nen bilden nur einen kleinen Teil der Rende-
ring Pipeline und sind fiir die Fixed Function
Pipeline relevant. Dieser Teil {ibernimmt die
normale Transformations- und Beleuchtungs-
berechnung.

Um solche Transformationen elegant zu
handhaben, verwenden Sie am besten die Di-
rect3D-Erweitungen (D3DX). D3DX sammelt
umfangreiche Direct3D-Hilfsroutinen fiir viel-
faltige Zwecke wie fiir Mathematik und Textu-
ren. Darin ist u.a. der D3DXMATRIX-Typ defi-
niert, der eine 4x4-Matrix darstellt. AuRerdem
verfligen Sie damit tiber zahlreiche Metho-
den, um Matrizen zu erzeugen und zu be-
rechnen. Um eine Matrix fiir eine perspektivi-
sche Abbildung zu erhalten, platzieren Sie die
folgenden Code-Fragment in der Render-
Schleife:

D3DXMATRIX mProjection;

Fiir die World Matrizen kénnen Sie z.B. die
Funktionen D3DXMatrixTranslation /
D3DXMatrixRotationAxis verwenden, um Ab-
bildungen zu verschieben oder zu drehen. Die
Kamera-Matrix erzeugen Sie intuitiv mit
D3DXMatrixLookAtLH.

Rendering Primitive

Jetzt haben Sie eine vollstandige Umgebung
geschaffen, um geometrische Primitive zu ren-
dern. Damit sind Punkte, Linien, Dreiecke usw.
gemeint. Die von Direct3D unterstiitzten Primi-
tive sehen Sie im Bild.

Am besten rendern Sie mit den so genannten
Vertex Buffers. Unter einem Vertex Buffer kon-
nen Sie sich einen Speicherbereich vorstellen,
der nur Vertex Daten wie z.B. die Eckpunkte ei-
nes Dreiecksnetzes und damit assoziierte Da-
ten enthdlt. Das Format der Vertices kann da-
bei sehr unterschiedlich sein: untransformiert,

transformiert, beleuchtet oder nicht, mit oder
ohne Textur-Koordinaten usw. Das Format be-
schreiben Sie iber das Flexible Vertex Format
(FVF). Die moglichen Vertex-Attribute sehen
Sie in der Tabelle.

Um einen Vertex Buffer anzulegen, legen Sie
zundchst das Format fest und erzeugen ent-
sprechende Daten (hier zum Beispiel mit ei-
nem konstanten Array), indem Sie eine Vertex-
Struktur und die dazugehérigen FVF-Flags (ei-
ne Kombination der D3DFVF-Konstanten)
definieren:

#define FVF_VERTEX3D
(D3DFVF_XYZ | D3DFVF_DIFFUSE)

Waéhrend der Initialisierung von Direct3D er-
zeugen Sie den Vertex Buffer:

LPDIRECT3DVERTEXBUFFER9 pDreieckVB;

Der erste Parameter gibt die Grof3e des Vertex
Buffers in Bytes an. Mit dem zweiten Parame-
ter konnen Sie so genannte D3DUSAGE-Para-
meter spezifizieren, z.B. um den Vertex Buffer
write-only zu deklarieren. Sie sollten die Fahig-
keiten eines Vertex Buffers immer so weit wie
moglich einschranken, um eine groitmogliche
Performance zu erzielen! Der néchste Parame-
ter gibt Auskunft tiber das FVF, gefolgt von ei-
ner D3DPOOL-Konstante, die bestimmt, in
welchem Speicherbereich (z.B. Haupt-oder
Grafikkarten-Speicher) der Vertex Buffer abge-
legt wird. Wenn Sie dafiir die Funktion
D3DPOOL_MANAGED waéhlen, koénnen Sie
nichts falsch machen: Direct3D kiimmert sich
um die Daten, platziert Sie am sinnvollsten und
behélt ein Backup im Systemspeicher. Der vor-
letzte Parameter ist ein Zeiger auf das Vertex
Buffer Interface, das mit dem Vertex Buffer as-
soziiert ist. Der letzte Parameter ist immer
NULL.

Nun koénnen Sie Ihre Daten in den Vertex Buf-
fer kopieren. Dazu miissen Sie diesen ver-
schliefen (lock). Sie erhalten einen Zeiger auf
einen Speicherbereich, in den Sie die Daten
schreiben:

VERTEX3D *pData = NULL;

Nachdem Sie die obigen Schritte wahrend der
Initialisierung vorgenommen haben, konnen
Sie in der Render-Schleife das Dreieck auf den
Bildschirm bringen. Dazu miissen Sie Di-
rect3D zwei Dinge — jeweils vor dem Rende-
ring-Kommando — mitteilen: Wo sind die Da-
ten, also welcher Vertex Buffer wird gerade
verwendet, und welches Format haben die
Daten?

Das Rendering Kommando lautet dann fiir ein
Primitiv ab der Position 0 im Vertex Buffer:

pD3DDevice->DrawPrimitive (
D3DPT_TRIANGLELIST, 0, 1);

In der shutdown3D()-Funktion geben Sie die

Ressourcen des Vertex Buffers bei Programm-

ende wieder frei. Dies muss erfolgen, bevor Sie

das Direct3D-Device freigeben:

pDreieckVB->release();

Render States

Wie Sie vielleicht von OpenGL wissen, gibt es
eine riesige Anzahl von so genannten Render
States: Zustande bzw. Variablen, deren Wert
das Rendering beeinflusst. Zum Beispiel
Culling Modi, Z-Buffer oder Alpha Tests,
Beleuchtungsparameter usw. Alle diese Ein-
stellungen sind in Direct3D in der SetRender-
State-Methode des Direct3D-Device Objektes
zusammengefasst. Diese Methode akzeptiert
zwei Parameter: Der erste gibt an, welchen
State (D3DRS-Konstante) Sie modifizieren
wollen, gefolgt von einem Wert. Dieser kann
dabei entweder ein numerischer Wert oder ei-
ne vordefinierte Konstante sein. Sdmtliche
Render States listet wiederum das DirectX-
SDK auf.

Unser Beispielprogramm verwendet die Ren-
der States z.B., um zwischen dem Rendering
von ausgefiillten Dreiecken und Dreieckskan-
ten zu wahlen:

// ausgefillt
pD3DDevice->SetRenderState(
D3DRS_FILLMODE, D3DFILL_SOLID);
pD3DDevice->SetRenderState(.....

Mit den Render States fiir Alpha Blending er-
zeugt unser Beispielprogramm weitere interes-
sante Effekte.

Ein Direct3D-Device kann sich entweder im
Betriebszustand oder im Lost State befinden.
Letzteres tritt z.B. ein, wenn einer Vollbild-An-
wendung der Fokus (z.B. durch Driicken von
Alt-Tab) entzogen wird oder auch durch Po-

wer Management Funktionen. Im Lost State
haben Rendering Kommandos keinen Effekt,
obwohl Sie D3D_OK als Riickgabewert liefern.
Der Lost State ist nur am D3DERR_DEVICE-
LOST-Riickgabewert der Present(...)-Methode
zu erkennen.

Lost Devices

Dieses Ereignis miissen Sie in Ihrem Pro-
gramm abfragen und warten, bis das Device
wiederhergestellt werden kann. Anschlieflend
sind alle Ressources im Video-Speicher freizu-
geben und neu zu erzeugen. Der benotigte
Programmcode fiir die Wiederherstellung ist
dabei dhnlich oder sogar identisch, um Vertex
Buffers und anderer Ressourcen zu initialisie-
ren. Dieser Vorgang ist aber nicht notwendig,
wenn Sie die Ressourcen mit D3DPOOL_MA-
NAGED angelegt haben. Deshalb kénnen wir
die detaillierte Behandlung der Lost Devices
zundchst auflen vor lassen.

Mit dem Beispielprogramm haben Sie so die
Grundlagen geschaffen, um saubere Direct3D-
Programme zu entwickeln, die die Leistung
Threr Grafikkarte ausschopfen konnen. Es dient
als Basis fiir weitere PC-Underground-Program-
me, welche Sie schrittweise ausbauen. cet

Alpha Blending: Farbeffekte durch Akkumula-
tion der Farbwerte

Flexible Vertex-Formats

Vertex Position o/0
RHW 0/-
Blending Gewichte 0/0
Vertex Normale -0
Vertex PunktgroRe 0/0
Farbe Diffus 0/d
Farbe Spekular 0/0
8x Textur Koordinaten 0/0

X, Y, Z (Float)

RHW (Float)

1,2 oder 3 Floats/DWORD
Nx, Ny, Nz (Float)

1 Float

RGBA (DWORD)

RGBA (DWORD)

1 bis 4 Floats

PC Magazin 7/2003 : www.pc-magazin.de

