
Das vor kurzem erschienene DirectX 9

enthält – neben den aktualisierten Kom-

ponenten DirectSound, DirectMusic etc. –

auch ein überarbeitetes Direct3D-Interface, das

die neueste Grafikhardware nutzen kann.

Grund genug, Direct3D9 einen Platz in der Rei-

he der PC-Underground-Artikel zu reservieren.

Wir zeigen Ihnen in dieser Ausgabe, wie Sie

Direct3D9 sowohl für eine Fenster- als auch

Vollbild-Anwendung korrekt initialisieren und

verwenden. Damit legen Sie die Grundlage für

weitere Programme und Grafikeffekte.

Für eine Direct3D-Anwendung benötigen Sie

zunächst ein normales Windows-Fenster. Die-

ses können Sie mit den MFC (Microsoft Foun-

dation Classes) anlegen, wenn Sie nicht ein-

fach die Win32-API verwenden wollen. Wir

haben den zweiten Weg gewählt, da dieser

einfacher zu überschauen ist und weniger

Overhead verursacht. Somit entsteht ein einfa-

ches Framework für Direct3D-Anwendungen.

Fenster auf

Wir zeigen Ihnen hier die vollständige Win-

Main-Funktion des Programms, in der Sie zu-

nächst eine eigene Fensterklasse anlegen. Da-

zu füllen Sie die Felder der WNDCLASSEX-

Struktur aus. Darin sind alle Informationen

über den Stil, Cursor, Icon usw. der Fensterklas-

se enthalten. Unter anderem müssen Sie auch

einen Zeiger auf die Window-Prozedure ange-

ben. Diese Funktion bearbeitet alle Nachrichten

wie Mausklicks und Tastatureingaben, die an

ein Fenster verschickt werden. Das Beispielpro-

gramm fragt diesen Klick auf den Schliessen-

Button des Fensters oder ein Drücken der

[Esc]-Taste ab und verschickt gegebenenfalls

eine WM_QUIT-Nachricht. Die Fensterklasse re-

gistrieren Sie dann mit RegisterClassEx:

int WINAPI WinMain(
HINSTANCE hInst,
HINSTANCE hPrevInst,
LPSTR commandLine,
int commandShow)

{
WNDCLASSEX wndClass;
MSG msg;

// wndClass Struktur ausfüllen
wndClass.lpszClassName = "PCUvsD3D9";
wndClass.lpfnWndProc = WindowProc;
...

// Fensterklasse registrieren
if(RegisterClassEx(&wndClass)==0)

return E_FAIL;

Wenn die Fensterklasse registriert ist, erzeugen

Sie Ihr Direct3D-Fenster und bringen es auf

den Bildschirm:

gHWND = CreateWindowEx(
NULL, "PCUvsD3D9", "Direct3D9",
WS_OVERLAPPEDWINDOW | WS_VISIBLE,

PROGRAMMIERUNG : PC UNDERGROUND

180

PC
 M

ag
az

in
 7

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Die Direct-3D-Komponente

des vor kurzem vorgestellten

DirectX 9 bietet eine

einheitliche Schnittstelle, um

Grafikbeschleuniger zu

programmieren.

Carsten Dachsbacher

Direct-3D-9

Kleine Schritte zur
großen Grafikw

or
ks

ho
p

Schichtenmodell: Die Bestandteile beim
Rendering von 3D-Objekten.

0, 0, 640, 480, NULL, NULL, hInst,
NULL);

if(gHWND == NULL) return E_FAIL;

ShowWindow(gHWND, commandShow);
UpdateWindow(gHWND);

Mit den folgenden Direct3D-Programmteilen

verbinden Sie drei Funktionen, die initialiseren,

rendern und die Ressourcen freigeben: initia-

lize3D(), render3D() und shutdown3D(). Die-

se finden Sie im letzten Teil der WinMain-Funk-

tion, die fortwährend die Rendering-Funktion

aufruft, bis Sie das Programm beenden:

// Initialisierung
initialize3D();

ZeroMemory(&msg, sizeof(msg));

// render3D(), bis zum Programmende
while(msg.message != WM_QUIT)
{
if(PeekMessage(&msg, NULL, 0, 0,

PM_REMOVE))
{
TranslateMessage(&msg);
DispatchMessage(&msg);

} else
render3D();

}

// und aufräumen
shutdown3d();

UnregisterClass("MY_WINDOWS_CLASS",
wndClass.hInstance);

return msg.wParam;
}

Die obige WinMain-Funktion erzeugt ein Fens-

ter. Für eine Vollbild-Anwendung ist an dieser

Stelle nur ein anderer CreateWindowEx-Auf-

ruf notwendig:

gHWND = CreateWindowEx(
NULL, "PCUvsD3D9", "Direct3D9",
WS_POPUP|WS_SYSMENU|WS_VISIBLE,

0, 0, 640, 480, NULL, NULL, hInst,
NULL);

Direct3D im Fenster

Bei der Initialisierung von Direct3D mit der je-

weiligen init3d()-Funktion sind die Unterschie-

de von Fenster- und Vollbild-Betrieb schon grö-

ßer. Deshalb initialisieren Sie zuerst Direct3D

für den Fenstermodus und anschließend für

Vollbildanwendungen.

Als erstes erzeugen Sie sich mit Direct3DCrea-

te9(...) eine Instanz eines IDirect3D-Objekts.

Der Parameter lautet dabei immer

D3D_SDK_VERSION. Dies dient dazu, für das

Rendering Direct3D-Objekte zu erzeugen, de-

ren Fähigkeiten auszulesen, Grafikmodi aufzu-

listen und die Parameter einzustellen. Achten

Sie darauf, Fehler abzufragen, um einen Pro-

grammabsturz zu vermeiden. In unserem Bei-

spielcode übernimmt dies die fiktive Funktion

error():

LPDIRECT3D9 pD3D = NULL;
LPDIRECT3DDEVICE9 pD3DDevice = NULL;

pD3D = Direct3DCreate9
(D3D_SDK_VERSION);

if (pD3D == NULL) error();

Da Sie im Fensterbetrieb keinen neuen Grafik-

modus festlegen, lesen Sie die Parameter des

aktuellen aus. Diese sind neben Breite, Höhe

und Bildwiederholfrequenz ein Format-Para-

meter, alles verpackt in eine D3DDISPLAYMO-

DE-Struktur. Der Format-Parameter enthält z.B.

die Farbtiefe.

D3DDISPLAYMODE dm;

if(FAILED(
pD3D->GetAdapterDisplayMode(

D3DADAPTER_DEFAULT, &dm)
))
error();

Jetzt prüfen Sie, ob das Direct3D-Gerät (Stan-

dard Device, identifiziert durch D3DADAP-

TER_DEFAULT) die Programmanforderungen

erfüllen kann wie z.B. eine bestimmte Z-Buf-

fer-Genauigkeit. Solche Format bezogenen De-

tails fragen Sie mit CheckDeviceFormat ab:

HRESULT hr;

hr = pD3D->CheckDeviceFormat(
D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,
dm.Format, D3DUSAGE_DEPTHSTENCIL,
D3DRTYPE_SURFACE, D3DFMT_D16);

if (hr==D3DERR_NOTAVAILABLE) error();

Der zweite Parameter (D3DDEVTYPE_HAL)

steht für ein Hardware beschleunigtes Direct-

3D-Device. Sie könnten ihn z.B. durch

D3DDEVTYPE_REF ersetzen, um den Softwa-

re Referenz Rasterizer zu verwenden.

Die Fähigkeiten einer Grafikkarte, die so ge-

nannten Caps (Capabilities) fassen Sie in einer

D3DCAPS9-Struktur zusammen. Darin sind al-

le Features enthalten, deren umfangreiche Lis-

te im DirectX9-SDK dokumentiert ist.

D3DCAPS9 caps;

if(FAILED(
pD3D->GetDeviceCaps(

D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
&caps

))
error();

Die weiterhin benötigten Caps beschreiben, ob

die Grafikkarte Vertex Processing (also Trans-

formation, Beleuchtung usw.) in Hard- oder

Software ausführt. Diese Information verwen-

den Sie, um die Behaviour Flags zu setzen:

DWORD flags;

if(caps.VertexProcessingCaps != 0)
flags |=
D3DCREATE_HARDWARE_VERTEXPROCESSING;
else
flags |=
D3DCREATE_SOFTWARE_VERTEXPROCESSING;

Als letzte Aufgabe der Initialisierung erzeugen

Sie das Direct3D-Device. Dazu benötigen Sie

noch die so genannten Presentation Parame-

ters. Diese beschreiben z.B. die Anzahl der

Backbuffers und deren Format oder das Z-Buf-

fer-Format. Im Falle des Fensterbetriebs, müs-

sen Sie nicht alle Parameter setzen:

D3DPRESENT_PARAMETERS pp;

Direct3D-Vollbild

Die Initialisierung eines Vollbild-Direct3D-

Modus unterscheidet sich prinzipiell in

einem Punkt: Sie sind nicht darauf angewie-

sen, den gerade aktuellen Grafikmodus des

Desktops zu verwenden, sondern Sie können

sich einen Modus aussuchen. Dazu fordern

Sie eine Liste aller unterstützten Grafikmodi

an, die eine D3DDISPLAYMODE-Struktur

beschreibt. Die Anzahl der Modi (hier mit 32-

Bit-Farbtiefe, bestimmt durch D3DFMT_

X8R8G8B8):

181

PC
 M

ag
az

in
 7

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Quelltexte sowie fertig übersetzte Routinen > CD
Praxis/Programmierung/PC Underground

Rendering Pipeline: Nach diesem Schema arbeitet jeder Grafikbeschleuniger. Das aktuelle DirectX9
bleibt allerdings nur der neuesten Grafikhardware vorbehalten.

int nMaxModes =
pD3D->GetAdapterModeCount(
D3DADAPTER_DEFAULT,
D3DFMT_X8R8G8B8);

Jetzt überprüfen Sie alle nMaxModes, bis Sie

einen gewünschten gefunden haben. Hierzu

prüfen Sie für jeden Modus die Breite, Höhe,

Bildwiederholfrequenz und die Format-Flags:

D3DDISPLAYMODE dm;
bool foundMode = false;

....

if (foundMode == false)
// kein passender Modus gefunden
exit();

Der letzte Aspekt, den Sie beim Vollbildbetrieb

noch beachten müssen, ist die Abfrage, ob für

den gewählten Grafikmodus Hardware-Be-

schleunigung zur Verfügung steht. Die ersten

beiden Parameter bezeichnen dabei wie ge-

habt das Direct3D-Device, gefolgt von den For-

maten für Frame- und Back-Buffer und einem

FALSE für Nicht-Fenster-Betrieb.

if (FAILED(
pD3D->CheckDeviceType(

D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
D3DFMT_X8R8G8B8...

Der Rest der Initialisierung, d.h. die Überprü-

fung der Caps, machen Sie so wie zuvor be-

schrieben.

Direct3D-Shutdown

Der Vollständigkeit halber zeigen wir Ihnen an

dieser Stelle, wie Sie Direct3D wieder korrekt

verlassen. Dies beschränkt sich lediglich auf

zwei Aufrufe, die das Direct3D-Device und Ob-

jekt freigeben:

void shutdown3D()

Nach der Initialisierung können Sie sich nun

endlich der Rendering Schleife Ihres Pro-

gramms widmen, die Sie in der render3D()-

Funktion implementieren. Diese ist fest nach

Schema aufgebaut: Als erstes löschen Sie den

Frame-, Depth- und/oder Stencil-Buffer, je nach

dem, was Sie für das Device angefordert ha-

ben. Wenn Sie jeweils den ganzen Buffer lö-

schen wollen, sind die ersten beiden Parame-

ter 0 bzw. NULL. Welcher Buffer betroffen ist,

legen Sie im dritten Parameter durch eine

Oder-Verknüpfung der D3DCLEAR-Flags fest.

Die Farb-, Tiefen- und Stencil-Werte, welche

die Buffers beschreiben, bilden die letzten drei

Parameter:

pD3DDevice->Clear(0, NULL,
D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,
D3DCOLOR_COLORVALUE(0, 1, 0, 1),
1.0f, 0);

Alle folgenden Rendering-Vorgänge befinden

sich zwischen den BeginScene- und EndSce-

ne-Aufrufen:

pD3DDevice->BeginScene();
// Rendering !
pD3DDevice->EndScene();

Zuletzt bringen Sie den Inhalt des Backbuffers,

also das Resultat des Renderings auf den Bild-

schirm. Da Sie auch hier jeweils den ganzen

Buffer sehen wollen, sind alle Parameter

NULL:

pD3DDevice->Present
(NULL, NULL, NULL, NULL);

Transformationen

Für das Rendering benötigen Sie Transforma-

tionen, die Sie über die SetTransform-Metho-

de Ihres Direct3D-Device setzen. Es gibt eine

Transformation (definiert durch eine 4x4

Matrix) für die 3D-2D-Projektion (D3DTS_PRO-

JECTION), eine Kamera-Abbildung (D3DTS_

VIEW) und die so genannte World-Transfor-

mation (D3DTS_WORLD), die die Transforma-

tion eines Objektes in den World Space angibt.

Zwar gibt es mehrere dieser World Matrizen,

um Vertex Blending bei Animationen zu ver-

wenden, doch bleibt das für unseren Einsatz

zunächst nebensächlich. Die Transformatio-

nen bilden nur einen kleinen Teil der Rende-

ring Pipeline und sind für die Fixed Function

Pipeline relevant. Dieser Teil übernimmt die

normale Transformations- und Beleuchtungs-

berechnung.

Um solche Transformationen elegant zu

handhaben, verwenden Sie am besten die Di-

rect3D-Erweitungen (D3DX). D3DX sammelt

umfangreiche Direct3D-Hilfsroutinen für viel-

fältige Zwecke wie für Mathematik und Textu-

ren. Darin ist u.a. der D3DXMATRIX-Typ defi-

niert, der eine 4x4-Matrix darstellt. Außerdem

verfügen Sie damit über zahlreiche Metho-

den, um Matrizen zu erzeugen und zu be-

rechnen. Um eine Matrix für eine perspektivi-

sche Abbildung zu erhalten, platzieren Sie die

folgenden Code-Fragment in der Render-

Schleife:

D3DXMATRIX mProjection;

Für die World Matrizen können Sie z.B. die

Funktionen D3DXMatrixTranslation /

D3DXMatrixRotationAxis verwenden, um Ab-

bildungen zu verschieben oder zu drehen. Die

Kamera-Matrix erzeugen Sie intuitiv mit

D3DXMatrixLookAtLH.

Rendering Primitive

Jetzt haben Sie eine vollständige Umgebung

geschaffen, um geometrische Primitive zu ren-

dern. Damit sind Punkte, Linien, Dreiecke usw.

gemeint. Die von Direct3D unterstützten Primi-

tive sehen Sie im Bild.

Am besten rendern Sie mit den so genannten

Vertex Buffers. Unter einem Vertex Buffer kön-

nen Sie sich einen Speicherbereich vorstellen,

der nur Vertex Daten wie z.B. die Eckpunkte ei-

nes Dreiecksnetzes und damit assoziierte Da-

ten enthält. Das Format der Vertices kann da-

bei sehr unterschiedlich sein: untransformiert,

PROGRAMMIERUNG : PC UNDERGROUND

182

PC
 M

ag
az

in
 7

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Render States: einfaches Modifizieren des
Rendering

Auswahl: Die
Direct3D-Rendering
Primitive berechnen
Sie mit vergleichs-
weise einfacher
Matrizen-
Mathematik.

transformiert, beleuchtet oder nicht, mit oder

ohne Textur-Koordinaten usw. Das Format be-

schreiben Sie über das Flexible Vertex Format

(FVF). Die möglichen Vertex-Attribute sehen

Sie in der Tabelle.

Um einen Vertex Buffer anzulegen, legen Sie

zunächst das Format fest und erzeugen ent-

sprechende Daten (hier zum Beispiel mit ei-

nem konstanten Array), indem Sie eine Vertex-

Struktur und die dazugehörigen FVF-Flags (ei-

ne Kombination der D3DFVF-Konstanten)

definieren:

#define FVF_VERTEX3D
(D3DFVF_XYZ | D3DFVF_DIFFUSE)

Während der Initialisierung von Direct3D er-

zeugen Sie den Vertex Buffer:

LPDIRECT3DVERTEXBUFFER9 pDreieckVB;

Der erste Parameter gibt die Größe des Vertex

Buffers in Bytes an. Mit dem zweiten Parame-

ter können Sie so genannte D3DUSAGE-Para-

meter spezifizieren, z.B. um den Vertex Buffer

write-only zu deklarieren. Sie sollten die Fähig-

keiten eines Vertex Buffers immer so weit wie

möglich einschränken, um eine größtmögliche

Performance zu erzielen! Der nächste Parame-

ter gibt Auskunft über das FVF, gefolgt von ei-

ner D3DPOOL-Konstante, die bestimmt, in

welchem Speicherbereich (z.B. Haupt-oder

Grafikkarten-Speicher) der Vertex Buffer abge-

legt wird. Wenn Sie dafür die Funktion

D3DPOOL_MANAGED wählen, können Sie

nichts falsch machen: Direct3D kümmert sich

um die Daten, platziert Sie am sinnvollsten und

behält ein Backup im Systemspeicher. Der vor-

letzte Parameter ist ein Zeiger auf das Vertex

Buffer Interface, das mit dem Vertex Buffer as-

soziiert ist. Der letzte Parameter ist immer

NULL.

Nun können Sie Ihre Daten in den Vertex Buf-

fer kopieren. Dazu müssen Sie diesen ver-

schließen (lock). Sie erhalten einen Zeiger auf

einen Speicherbereich, in den Sie die Daten

schreiben:

VERTEX3D *pData = NULL;

Nachdem Sie die obigen Schritte während der

Initialisierung vorgenommen haben, können

Sie in der Render-Schleife das Dreieck auf den

Bildschirm bringen. Dazu müssen Sie Di-

rect3D zwei Dinge – jeweils vor dem Rende-

ring-Kommando – mitteilen: Wo sind die Da-

ten, also welcher Vertex Buffer wird gerade

verwendet, und welches Format haben die

Daten?

Das Rendering Kommando lautet dann für ein

Primitiv ab der Position 0 im Vertex Buffer:

pD3DDevice->DrawPrimitive(
D3DPT_TRIANGLELIST, 0, 1);

In der shutdown3D()-Funktion geben Sie die

Ressourcen des Vertex Buffers bei Programm-

ende wieder frei. Dies muss erfolgen, bevor Sie

das Direct3D-Device freigeben:

pDreieckVB->release();

Render States

Wie Sie vielleicht von OpenGL wissen, gibt es

eine riesige Anzahl von so genannten Render

States: Zustände bzw. Variablen, deren Wert

das Rendering beeinflusst. Zum Beispiel

Culling Modi, Z-Buffer oder Alpha Tests,

Beleuchtungsparameter usw. Alle diese Ein-

stellungen sind in Direct3D in der SetRender-

State-Methode des Direct3D-Device Objektes

zusammengefasst. Diese Methode akzeptiert

zwei Parameter: Der erste gibt an, welchen

State (D3DRS-Konstante) Sie modifizieren

wollen, gefolgt von einem Wert. Dieser kann

dabei entweder ein numerischer Wert oder ei-

ne vordefinierte Konstante sein. Sämtliche

Render States listet wiederum das DirectX-

SDK auf.

Unser Beispielprogramm verwendet die Ren-

der States z.B., um zwischen dem Rendering

von ausgefüllten Dreiecken und Dreieckskan-

ten zu wählen:

// ausgefüllt
pD3DDevice->SetRenderState(
D3DRS_FILLMODE, D3DFILL_SOLID);
pD3DDevice->SetRenderState(.....

Mit den Render States für Alpha Blending er-

zeugt unser Beispielprogramm weitere interes-

sante Effekte.

Ein Direct3D-Device kann sich entweder im

Betriebszustand oder im Lost State befinden.

Letzteres tritt z.B. ein, wenn einer Vollbild-An-

wendung der Fokus (z.B. durch Drücken von

Alt-Tab) entzogen wird oder auch durch Po-

wer Management Funktionen. Im Lost State

haben Rendering Kommandos keinen Effekt,

obwohl Sie D3D_OK als Rückgabewert liefern.

Der Lost State ist nur am D3DERR_DEVICE-

LOST-Rückgabewert der Present(...)-Methode

zu erkennen.

Lost Devices

Dieses Ereignis müssen Sie in Ihrem Pro-

gramm abfragen und warten, bis das Device

wiederhergestellt werden kann. Anschließend

sind alle Ressources im Video-Speicher freizu-

geben und neu zu erzeugen. Der benötigte

Programmcode für die Wiederherstellung ist

dabei ähnlich oder sogar identisch, um Vertex

Buffers und anderer Ressourcen zu initialisie-

ren. Dieser Vorgang ist aber nicht notwendig,

wenn Sie die Ressourcen mit D3DPOOL_MA-

NAGED angelegt haben. Deshalb können wir

die detaillierte Behandlung der Lost Devices

zunächst außen vor lassen.

Mit dem Beispielprogramm haben Sie so die

Grundlagen geschaffen, um saubere Direct3D-

Programme zu entwickeln, die die Leistung

Ihrer Grafikkarte ausschöpfen können. Es dient

als Basis für weitere PC-Underground-Program-

me, welche Sie schrittweise ausbauen. : et

183

PC
 M

ag
az

in
 7

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Alpha Blending: Farbeffekte durch Akkumula-
tion der Farbwerte

Flexible Vertex-Formats

Vertex-Attribut transformierte/untransformiert Vertices Daten

Vertex Position ✔ /✔ X, Y, Z (Float)

RHW ✔ /- RHW (Float)

Blending Gewichte ✔ /✔ 1, 2 oder 3 Floats/DWORD

Vertex Normale -/✔ Nx, Ny, Nz (Float)

Vertex Punktgröße ✔ /✔ 1 Float

Farbe Diffus ✔ /✔ RGBA (DWORD)

Farbe Spekular ✔ /✔ RGBA (DWORD)

8x Textur Koordinaten ✔ /✔ 1 bis 4 Floats

