
In der letzten Ausgabe von PC Under-

ground haben Sie erfahren, wie Sie Di-

rect3D initialisieren und geometrische Primiti-

ve mit Vertex Buffers rendern. Jetzt kümmern

Sie sich darum, wie die Oberflächen erschei-

nen. Dazu benötigen Sie Texturen und Be-

leuchtungseffekte. Dieser Artikel führt Ihnen

die notwendigen Schritte vor.

Die Verwendung von Texturen ist eine der am

häufigsten eingesetzten Techniken bei der 3D-

Grafik. Dabei wird ein, meist zweidimen-

sionales, gegebenes Bild auf eine Oberfläche

projiziert. Somit können verschiedene Punkte

wie auf einem Dreieck unterschiedliche

Farbwerte besitzen. Die Motivation ist einfach:

Sie wollen eine hohe visuelle bei geringer

geometrischer Komplexität erzielen. Die sim-

ple Abbildung einer Textur auf eine Ober-

fläche ist der einfachste Fall. Heutige Gra-

fikkarten bieten enorm leistungsfähige

Texturierungs-Features und eine breite Palette

von und für Texturen, wie Bump- oder

Gloss-Mapping, Toon-Shading und Shadow

Maps.

Texturen können dabei entweder ein-, zwei-

oder dreidimensionale Daten enthalten, sta-

tisch oder dynamisch sein. Die Art und Weise,

wie Sie Texturdaten interpretieren bzw. ausle-

sen, konfigurieren Sie über Render States, be-

dingt durch die Entwicklung der Grafik-Hard-

ware und APIs. Auf neueren Grafikkarten pro-

grammieren Sie dies frei in den so genannten

Pixel Shaders oder Fragment Programs.

Texturen in Direct3D

Um eine statische Textur in Direct3D zu laden

und zu verwenden, nutzen Sie die Hilfsfunktio-

nen aus der Direct3D-Bibliothek (D3DX). In Di-

rect3D 9 greifen Sie über das IDirect3DTextu-

re9-Interface auf Textur-Objekte zu und än-

dern so die Textur. Mit diesen Hilfsfunktionen

lesen Sie mit nur einem Funktionsaufruf eine

Textur aus einer Bilddatei im Format .bmp,

.dds, .dib, .jpg, .png oder .tga aus, erzeugen

ein Textur-Objekt und übergeben die Daten:

LPDIRECT3DDEVICE9 pD3DDevice;
...
LPDIRECT3DVERTEXBUFFER9 pMeshVB=

NULL;

D3DXCreateTextureFromFile(
pD3DDevice, „bild.bmp“, &pTexture);

Dieser Aufruf variiert vereinfacht die Funktion

D3DXCreateTextureFromFileEx, um eine stati-

sche 2D-Texture zu laden. Letztere bietet zu-

sätzliche Parameter, um das Bild zu skalieren,

die Textur zu verwenden, sie im Memory Pool

zu platzieren und um Mip Maps zu generieren.

Zusätzlich benötigen Sie Information darüber,

wie die Textur auf Ihr 3D-Objekt, also bei-

PROGRAMMIERUNG : PC UNDERGROUND

174

PC
 M

ag
az

in
 8

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Machen Sie mehr aus simplen

geometrischen Primitiven:

Texturen und Beleuchtung

verführen und verzaubern den

Betrachter Ihrer virtuellen

Welten.

Carsten Dachsbacher

Direct3D 9 – Teil II

Kugel und Würfel
im besten Lichtw

or
ks

ho
p

Planare Projektion: So bestimmen Sie
am leichtesten Textur-Koordinaten
durch eine Projektion.

Thema mit Variationen: Eine zylindrische
Projektion.

spielsweise die Dreiecke, abgebildet wird. Da-

zu nutzen Sie Textur-Koordinaten: Jedem Ver-

tex (Eckpunkt) Ihres Dreiecksnetzes weisen

Sie eine Koordinate innerhalb der Textur zu.

Diese Koordinate wird beim Rendering per-

spektivisch korrekt interpoliert und somit für

jeden Pixel des Bildes der auszulesende Texel,

der Bildpunkt der Textur, bestimmt. Die Textur-

Koordinaten, die Sie explizit für jeden Vertex

angeben müssen, bestimmen Sie auf verschie-

dene Weise. Sie erhalten diese aus einem Mo-

dellierungsprogramm, mit dem das 3D-Objekt

angelegt wurde, wenn parametrische Flächen

wie Spline Patches verwendet werden, oder

Sie texturieren das Objekt von Hand. Dabei le-

gen Sie selbst die Textur-Koordinaten für alle

Vertices fest. Ganz allgemein können Sie noch

für jede Art von Objekten die Textur-Koordina-

ten durch eine Projektion bestimmen. Häufig

verwendete Projektionen zeigen die vier Bilder

mit Würfel und Kugel im Schachbrettmuster.

Die Textur-Koordinaten geben Sie mit den an-

deren Daten im Vertex-Buffer an, indem Sie zu-

nächst das Vertex-Format erweitern:

typedef struct
{
float x, y, z;
DWORD color;
float s, t;

}MESHVERTEX;

Zudem passen Sie die flexible Vertex-Format-

beschreibung an:

#define FVF_MESHVERTEX
(D3DFVF_XYZ |
D3DFVF_DIFFUSE |
D3DFVF_TEX1)

MESHVERTEX *pData = NULL;

pMeshVB->Lock(0, 0,
(void**)&pData, D3DLOCK_DISCARD);

for (i = 0; i < nVertices; i++)
{
// alle Daten pro Vertex schreiben:
// x, y, z, color, s, t
pData->s = ...;
pData->t = ...;
...

pData ++;
}

pMeshVB->Unlock();

Um Ihr 3D-Objekt texturiert zu rendern, müs-

sen Sie Direct3D mitteilen, welche Textur Sie

verwenden wollen, wobei Sie mit heutiger 3D-

Hardware mehrere Texturen gleichzeitig ein-

setzen können. Diese Texturierungs-Einheiten

auf der Grafikkarte nennt man, auch wegen

der Verknüpfungen miteinander, Texture Sta-

ges. Für jede Texture Stage legen Sie die ver-

wendete Textur mit der IDirect3DDevice9::Set-

Texture Methode fest:

pD3DDevice->SetTexture(0, pTexture);

Die Anzahl der gleichzeitig von der Hardware

unterstützten Texturen überprüfen Sie anhand

der Device Caps in den Variablen

D3DCAPS.MaxSimultaneousTextureStages

und D3DCAPS9.MaxTextureBlendingStages.

Textur im Eigenbau

Für den Fall, dass Sie Texturen selbst in Ihrem

Programm erzeugen und keine Bilddateien

verwenden wollen, bietet die D3DX-Bibliothek

passende Funktionen. Mit der D3DXCreateTex-

ture-Methode legen Sie eine Textur mit beliebi-

gen Auflösungen und im Texel-Format an. Da-

bei geben Sie den Speicherbereich an, in dem

die Textur liegen soll. Weiterhin bestimmen Sie

die Verwendung, indem Sie die Textur dyna-

misch (d.h. der Inhalt ändert sich) oder als

Render Target deklarieren. Nur die Fähigkeiten

der Grafikkarte limitieren diese Einstellungen,

weshalb Sie die Caps und die Rückgabewerte

der Methode beachten müssen.

Eine statische Textur, zunächst ohne Inhalt, mit

256x256 Texels, 32-Bit-RGBA-Format und Mip

Maps legen Sie wie folgt an:

D3DXCreateTexture(
pD3DDevice, 256, 256, 0, 0,
D3DFMT_A8R8G8B8, D3DPOOL_MANAGED,
pTexture);

Beachten Sie dabei, dass die Parameter der tat-

sächlich erzeugten Textur von den angegebe-

nen abweichen können. Dies bedingt die

D3DXCheckTextureRequirements-Funktion,

mit der Sie Parameter auf ihre Validität über-

prüfen. Zudem können Sie ganz darauf ver-

zichten, eine der D3DX-Methoden zu verwen-

den, um die Textur zu erzeugen. Dies kann

z. B. wünschenswert sein, wenn Sie die D3DX-

Bibliothek, die Sie statisch linken müssen,

nicht in Ihrem Projekt verwenden wollen. So

erhalten Sie kleinere ausführbare Dateien. In

diesem Fall verwenden Sie die Methode IDi-

rect3DDevice9::CreateTexture. Diese verwen-

det prinzipiell dieselben Parameter, passt die

Parameter aber nicht an:

pD3DDevice->CreateTexture(
256, 256, 0, 0, D3DFMT_A8R8G8B8,
D3DPOOL_MANAGED, &pTexture, NULL);

Jetzt bleibt noch die Aufgabe, die Textur-Daten

zu übergeben. Dazu müssen Sie die Textur per

Lock verschließen, um auf die Daten zuzugrei-

fen. Nach dem Lock-Befehl können Sie die Da-

ten lesen und/oder schreiben (je nach Modus)

und mit einem Unlock-Befehl die Änderungen

wirksam werden lassen. Das Lock-Kommando

des IDirect3DTexture9 Interface füllt eine

D3DLOCKED_RECT-Struktur aus, in der die

notwendigen Daten für den Zugriff stehen:

typedef struct _D3DLOCKED_RECT {
INT Pitch;
void *pBits;

} D3DLOCKED_RECT;

175

PC
 M

ag
az

in
 8

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Quelltexte sowie fertig übersetzte Routinen > CD
Praxis/Programmierung/PC Underground

Kugelnde Würfel: Eine sphärische Projektion
mit breitem Muster.

Schach in 3D: Diese kubische Projektion
mustert den Würfel wie ein Schachbrett.

Locking Flags für LockRect

Eintrag Beschreibung

D3DLOCK_DISCARD Write-Only-Zugriff auf die Textur, der gesamte Rect-Bereich wird
überschrieben.

D3DLOCK_NO_DIRTY_UPDATE Dirty Regions sind Bereiche in Texturen, für die ein Update zur
Grafikkarte notwendig ist. Wenn Sie nicht wollen, dass der
gerade bearbeitete Bereich als dirty markiert wird, wählen Sie
dieses Flag.

D3DLOCK_NO_SYSLOCK Während des Lockings wird das System gestoppt;
dann können andere Tasks weiter arbeiten.

D3DLOCK_READONLY Read-Only-Zugriff auf die Texture

HRESULT IDirect3DTexture9::LockRect(
UINT Level,
D3DLOCKED_RECT *pLockedRect,
CONST RECT *pRect,
DWORD Flags);

Dabei ist pBits ein Zeiger auf den Speicherbe-

reich der Textur. Pitch gibt den Abstand zweier

Zeilen der Textur im Speicher in Bytes an. Für

das Locking müssen Sie angeben, was Sie mit

der Textur anstellen wollen. Flags, die Sie mit-

einander kombinieren können, beschreibt die

Tabelle. Um auf die gesamte Textur zuzugrei-

fen, geben Sie für pRect den Wert NULL an:

D3DLOCKED_RECT lockedRect;

pTexture->LockRect(
0, &lockedRect, NULL, 0);

Anschließend füllen Sie die Textur mit Daten.

Das Beispiel speichert sie im 32-Bit-RGBA-For-

mat. Der Pitch-Wert, den Sie unbedingt beach-

ten müssen, ist aber in Bytes angegeben. Die

Quelldaten der Textur, im Array texData gege-

ben, kopieren Sie und geben sie am Ende wie-

der frei:

const int sizeX = 256;
const int sizeY = 256;

DWORD texData[256 * 256] = ...;

BYTE *pDest=(BYTE*)lockedRect.pBits;

DWORD *pSource = texData;

for (y = 0; y < sizeY; y++)
{

DWORD *pLine = (DWORD*)
&pDest[y * lockedRect.Pitch];

for (x = 0; x < sizeX; x++)
*(pLine++) = *(pSource++);

}

pTexture->UnlockRect(0);

Mip Mapping

Bisher haben wir Ihnen den ersten Parameter

der LockRect-Methode und die Mip Mapping

Parameter verschwiegen. Um das Mip Map-

ping zu erklären, folgen Sie uns zu einem Ab-

stecher in die Sampling-Theorie. Das Texture

Mapping bildet eine Textur zunächst per Ren-

dering auf dem Bildschirm ab. Dabei wird für

jeden Pixel, der im endgültigen Bild gesetzt

wird, der dazugehörige Texel der Textur be-

stimmt und ausgelesen – die Textur also an

verschiedenen Stellen abgetastet. Die Abstän-

de der abgetasteten Texel hängen von der Ab-

bildung der Textur auf dem Dreieck sowie von

den Betrachter-Parametern ab und bestimmen

somit die Abtastfrequenz. Der Inhalt der Textur

lässt sich wiederum als ein bestimmtes Signal

interpretieren. Die Sampling-Theorie besagt

aber, dass die Abtastung eines Signals mit der

doppelten Frequenz erfolgen muss, wie die

höchste Frequenz in der Signalquelle (unsere

Textur) schwingt.

Daraus lässt sich folgern: Wird eine Textur ver-

kleinert auf dem Bildschirm dargestellt und die

Bildschirmauflösung ist nicht hoch genug, so

treten Abtast-Artefakte bzw. -fehler auf. Fre-

quenzen sind also sichtbar, die in der eigentli-

chen Textur nicht vorhanden sind, so genann-

te Aliasing Effekte.

Um diesem vorzubeugen, setzen Sie Mip Maps

ein. Dabei handelt es sich um niedriger aufge-

löste Varianten der ursprünglichen Textur, die

die Grafikkarte selbstständig auswählt, um das

Aliasing zu verwenden. Mip Maps können Sie

entweder automatisch eine Textur erzeugen

lassen, wenn Ihre Grafikkarte dies unterstützt

(D3DCAPS2_CANAUTOGENMIPMAP), oder ex-

plizit eine Textur angeben. Das nächste Bild

zeigt das Schachbrett-Muster aus dem vorigen

Bild mit Mip Maps, wovon die Qualität der Dar-

stellung deutlich profitiert. Im Folgenden se-

hen Sie dieselbe Situation mit unterschiedlich

eingefärbten Mip Maps.

Wie eine Textur an einer Koordinate ausgele-

sen wird, bestimmen Sie mit der Methode IDi-

rect3DDevice9::SetSamplerState. Dabei lässt

sich die Adressierung und die Abtastung ein-

stellen. Bei der Adressierung stellen Sie z.B.

ein, ob eine Textur gekachelt oder ge-clamped

wird, d.h. bei Überschreiten der Textur-Gren-

zen der letzte Texel wiederholt wird. Interes-

sant im Kontext des Mip Mapping sind die so

genannten Magnification, Minification und

Mip Filter. Beim Fall von Magnification sehen

Sie die Textur größer auf dem Bildschirm als

sie ist. Beim Auslesen eines einzelnen Texels

können Sie Farbwerte der umgebenden Texel

interpolieren. Die häufigste Technik ist die bi-

lineare Interpolation, welche die vier nächsten

Texel heranzieht. Bei der verkleinerten Darstel-

lung (Minification) sind ebenfalls verschiedene

Abtastmodi wählbar.

Wie erwähnt, kann die Grafikkarte die entspre-

chende Mip Map Stufe der Textur selbstständig

wählen. Es ist auch möglich, statt zwischen

zwei Stufen hin und her zu schalten, zwischen

diesen zu interpolieren: das so genannte tri-li-

neare Filtering.

Diese Einstellungen finden Sie im Beispielpro-

gramm, dessen Wirkungen Sie am Bildschirm

nachvollziehen können.

PROGRAMMIERUNG : PC UNDERGROUND

176

PC
 M

ag
az

in
 8

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Aliasing: Abtast-
Artefakte treten
auf, wenn Sie ohne
Mip Mapping
arbeiten.

Eingefärbt: Unter-
schiedlich eingefärbte
Mip Maps tauchen die
Landschaft in buntes
Licht.

Mip Mapping: Wenn
die Aliasing Artefakte
verschwinden, wird
die Darstellung glaub-
hafter.

PROGRAMMIERUNG : PC UNDERGROUND

178

PC
 M

ag
az

in
 8

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Es werde Licht

Direct3D und heutige Grafikhardware erlaubt

es, die Beleuchtung lokal zu berechnen. Lokal

bedeutet, dass die Farbe einer Oberfläche (für

jeden Vertex) anhand seiner Oberflächennor-

male, den angegebenen Lichtquellen und der

Betrachterposition berechnet wird. In die Be-

rechnung fließt kein reflektiertes Licht anderer

Oberflächen der 3D-Szene ein. Die Auswer-

tung des Beleuchtungsmodells erfolgt meist

pro Vertex, und die berechnete Beleuchtung

durch die Lichtquellen wird über ein Dreieck

linear interpoliert. Das Per-Pixel Lighting be-

rechnet die Beleuchtung für jedes Fragment

(Pixel), das von der Grafikkarte gezeichnet

wird. Die Berechnung findet dabei entweder

mit Texturierungs-Einheiten oder in Pixel Sha-

der bzw. Fragment Programm bezeichneten

Teilen der Grafik-Pipeline statt. Der Aufwand

beim Rendering für Effekte wie Bump Map-

ping ist deutlich höher. Solche Techniken wer-

den Sie in den folgenden Direct3D-Teilen von

PC Underground kennen lernen.

Zunächst widmen Sie sich den grundlegenden

Verfahren. Wie erwähnt, benötigen Ihre Verti-

ces für die Beleuchtungsberechnung einen

weiteren Parameter: die Oberflächennormale.

Diese erhalten Sie entweder vom Modeling Pro-

gramm, bestimmen Sie bei parametrischen

Flächen aus der Beschreibung oder Sie berech-

nen sie aus einem Dreiecksnetz. Die dazugehö-

rige Flexible Vertex Format Konstante lautet

D3DFVF_NORMAL. Um die Beleuchtungsbe-

rechnung durchzuführen, müssen Sie die Ma-

terialeigenschaften der Oberfläche angeben.

Diese sind in der Struktur D3DMATERIAL9 zu-

sammengefasst, die je einen Farbwert für am-

biente, diffuse und spekulare Reflexion und

Lichtemission und einen Float Wert für das

Phong Modell (Halfway Vektor Variante – siehe

SDK) enthält. Die Farbwerte sind vom Typ

D3DCOLORVALUE, der als Struktur aus vier

Float-Werten definiert ist. Diese Struktur füllen

Sie mit den gewünschten Werten aus. Die Me-

thode IDirect3DDevice9::SetMaterial bestimmt

die Materialeigenschaften. Folgendes Beispiel

erzeugt ein Material mit rein diffusen Eigen-

schaften:

D3DMATERIAL9 mat;

ZeroMemory(
&mat, sizeof(D3DMATERIAL9));

mat.Diffuse.r =
mat.Diffuse.g =
mat.Diffuse.b =
mat.Diffuse.a = 1.0f;
pD3DDevice->SetMaterial(&mat);

Für die Beleuchtung müssen Sie noch sorgen.

Dafür stehen Ihnen drei Typen von Lichtquel-

len zur Verfügung. Der einfachste Typ ist das

Directional Light (D3DLIGHT_DIRECTIONAL).

Das ist Licht mit parallelen Strahlen – ver-

gleichbar mit einer unendlich weit entfernten

Punkt-Lichtquelle. Für solche Lichtquellen ist

die Beleuchtungsberechnung einfach, weil Sie

keine Lichtquellen-Position berücksichtigen

müssen. Beim zweiten Typ handelt es sich um

die Punkt-Lichtquelle (D3DLIGHT_POINT).

Diese Lichtquelle leuchtet von ihrer angegebe-

nen Position radial in alle Richtungen. Die

komplizierteste Lichtquelle in Direct3D ist ein

Spot Light (D3DLIGHT_SPOT), die wie ein

Scheinwerfer strahlt.

Die Abstrahlung ist vergleichbar mit der

Punkt-Lichtquelle, ist aber auf einen kegelför-

migen Bereich beschränkt, den Sie bestim-

men können. Alle Lichtquellen-Parameter und

-Definitionen fasst die D3DLIGHT9-Struktur

zusammen. Je nach Lichtquellen-Typ benöti-

gen Sie nur einen Teil oder alle Einträge dieser

Struktur. Die Parameter umfassen die Farbe

der Lichtquelle für ambientes, diffuses und

spekulares Licht, die Position und Richtung,

Parameter für den Spot Light Kegel und den

maximalen Einflussbereich (ein Abstands-

wert).

Weiterhin ist die Abschwächung (Attenuation)

des Lichts durch einen konstanten, linearen

und quadratischen Koeffizienten (Attenuati-

on0..2) einstellbar. Das bedeutet, die Lichtin-

tensität wird in Abhängigkeit vom Abstand d

eines Vertices zur Lichtquelle mit folgendem

Wert multipliziert:

att = 1.0 / (Attenuation0 +
Attenuation1 * d +
Attenuation2 * d˝)

Nach dem Ausfüllen einer D3DLIGHT9-Struktur

übergeben Sie diese an Direct3D mit der Me-

thode IDirect3DDevice9::SetLight(...). Dabei ist

der erste Parameter ein Null basierter Index,

mit dem die Lichtquelle referenziert wird. Als

zweiten Parameter übergeben Sie die Adresse

der D3DLIGHT9-Struktur.

Neu definierte Lichtquellen sind zunächst noch

ausgeschaltet. Sie aktivieren Sie mit LightEnab-

le(...): der erste Parameter ist der Lichtquellen-

Index, der zweite ein Bool-Wert, der angibt, ob

die Lichtquelle an- oder ausgeschaltet ist. Die

Anzahl der maximal gleichzeitig aktivierbaren

Lichtquellen entnehmen Sie – wie alle anderen

Device spezifischen Fähigkeiten – den Caps.

Der Eintrag lautet D3DCAPS9.MaxActiveLights.

Um die Parameter für eine bestehende Licht-

quelle auszulesen verwenden Sie GetLight(...).

Um festzustellen, ob eine Lichtquelle an oder

aus ist, steht Ihnen die GetLightEnable(...)-Me-

thode zur Verfügung.

Folgendes Beispiel zeigt, wie Sie ein Direction

Light definieren und anschalten:

D3DLIGHT9 light;
ZeroMemory(
&light, sizeof(D3DLIGHT9));

light.Type = D3DLIGHT_DIRECTIONAL;
light.Direction =
D3DXVECTOR3(0.0f, 0.0f, 1.0f);

light.Diffuse.r = 1.0f;
light.Diffuse.g = 1.0f;
light.Diffuse.b = 1.0f;
pD3DDevice->SetLight(0, &light);
pD3DDevice->LightEnable(0, TRUE);

Als letztes aktivieren Sie noch die Beleuch-

tungsberechnung (allgemein) für Direct3D:

pD3DDevice->SetRenderState(
D3DRS_LIGHTING, FALSE);

Die spekulare Beleuchtung müssen Sie separat

anschalten:

pD3DDevice->SetRenderState(
D3DRS_SPECULARENABLE, TRUE);

: et

Info

www.microsoft.com/downloads/
details.aspx?FamilyID=124552ff-8363-
47fd-8f3b-36c226e04c85&Display-
Lang=en
www.dachsbacher.de/pcu
www.ati.com
www.nvidia.com,

,

,

,

Beleuchtet: Unser Beispielprogramm zeigt den Würfel, den gleich drei Typen von Lichtquellen
anstrahlen: Directional, Point mit Attenuation und Spot Light.

