174

PC Magazin 8/2003 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

Machen Sie mehr aus simplen
geometrischen Primitiven:
Texturen und Beleuchtung
verfiihren und verzaubern den
Betrachter lhrer virtuellen
Welten.

Carsten Dachsbacher

f

4 41i™

&

Planare Projektion: So bestimmen Sie
am leichtesten Textur-Koordinaten
durch eine Projektion.

A

W

Thema mit Variationen: Eine zylindrische
Projektion.

Direct3D 9 - Teil Il

Kugel und Wirfel
Im besten Licht

In der letzten Ausgabe von PC Under-

ground haben Sie erfahren, wie Sie Di-
rect3D initialisieren und geometrische Primiti-
ve mit Vertex Buffers rendern. Jetzt kimmern
Sie sich darum, wie die Oberflachen erschei-
nen. Dazu bendétigen Sie Texturen und Be-
leuchtungseffekte. Dieser Artikel fiihrt [hnen
die notwendigen Schritte vor.
Die Verwendung von Texturen ist eine der am
hédufigsten eingesetzten Techniken bei der 3D-
Grafik. Dabei wird ein, meist zweidimen-
sionales, gegebenes Bild auf eine Oberflache
projiziert. Somit kdnnen verschiedene Punkte
wie auf einem Dreieck unterschiedliche
Farbwerte besitzen. Die Motivation ist einfach:
Sie wollen eine hohe visuelle bei geringer
geometrischer Komplexitét erzielen. Die sim-
ple Abbildung einer Textur auf eine Ober-
flache ist der einfachste Fall. Heutige Gra-
fikkarten bieten enorm leistungsfahige
Texturierungs-Features und eine breite Palette
von und fiir Texturen, wie Bump- oder
Gloss-Mapping, Toon-Shading und Shadow
Maps.
Texturen kénnen dabei entweder ein-, zwei-
oder dreidimensionale Daten enthalten, sta-
tisch oder dynamisch sein. Die Art und Weise,
wie Sie Texturdaten interpretieren bzw. ausle-
sen, konfigurieren Sie {iber Render States, be-
dingt durch die Entwicklung der Grafik-Hard-
ware und APIs. Auf neueren Grafikkarten pro-

grammieren Sie dies frei in den so genannten
Pixel Shaders oder Fragment Programs.

Texturen in Direct3D

Um eine statische Textur in Direct3D zu laden
und zu verwenden, nutzen Sie die Hilfsfunktio-
nen aus der Direct3D-Bibliothek (D3DX). In Di-
rect3D 9 greifen Sie tiber das IDirect3DTextu-
re9-Interface auf Textur-Objekte zu und &n-
dern so die Textur. Mit diesen Hilfsfunktionen
lesen Sie mit nur einem Funktionsaufruf eine
Textur aus einer Bilddatei im Format .bmp,
.dds, .dib, .jpg, .png oder .tga aus, erzeugen
ein Textur-Objekt und Ubergeben die Daten:

LPDIRECT3DDEVICES pD3DDevice;

LPDIRECT3DVERTEXBUFFER9 pMeshVB=
NULL;

D3DXCreateTextureFromFile (
pD3DDevice, ,bild.bmp“, &pTexture);

Dieser Aufruf variiert vereinfacht die Funktion
D3DXCreateTextureFromFileEx, um eine stati-
sche 2D-Texture zu laden. Letztere bietet zu-
satzliche Parameter, um das Bild zu skalieren,
die Textur zu verwenden, sie im Memory Pool
zu platzieren und um Mip Maps zu generieren.
Zusétzlich benétigen Sie Information dariiber,
wie die Textur auf Ihr 3D-Objekt, also bei-

Quelltexte sowie fertig iibersetzte Routinen > CD
Praxis/Programmierung/PC Underground

spielsweise die Dreiecke, abgebildet wird. Da-
zu nutzen Sie Textur-Koordinaten: Jedem Ver-
tex (Eckpunkt) Ihres Dreiecksnetzes weisen
Sie eine Koordinate innerhalb der Textur zu.
Diese Koordinate wird beim Rendering per-
spektivisch korrekt interpoliert und somit fiir
jeden Pixel des Bildes der auszulesende Texel,
der Bildpunkt der Textur, bestimmt. Die Textur-
Koordinaten, die Sie explizit fiir jeden Vertex
angeben miissen, bestimmen Sie auf verschie-
dene Weise. Sie erhalten diese aus einem Mo-
dellierungsprogramm, mit dem das 3D-Objekt
angelegt wurde, wenn parametrische Flachen
wie Spline Patches verwendet werden, oder
Sie texturieren das Objekt von Hand. Dabei le-
gen Sie selbst die Textur-Koordinaten fiir alle
Vertices fest. Ganz allgemein kénnen Sie noch
fir jede Art von Objekten die Textur-Koordina-
ten durch eine Projektion bestimmen. Haufig
verwendete Projektionen zeigen die vier Bilder
mit Wiirfel und Kugel im Schachbrettmuster.
Die Textur-Koordinaten geben Sie mit den an-
deren Daten im Vertex-Buffer an, indem Sie zu-
nachst das Vertex-Format erweitern:

typedef struct

{
float x, y, z;
DWORD color;
float s, t;
}MESHVERTEX;

Zudem passen Sie die flexible Vertex-Format-
beschreibung an:

#define FVF_MESHVERTEX
(D3DFVF_XYZ |
D3DFVF_DIFFUSE |
D3DFVF_TEX1)

MESHVERTEX *pData = NULL;

pMeshVB->Lock(0, O,
(void**)&pData, D3DLOCK_DISCARD);

for (1 = 0; 1 < nVertices; i++)
{
// alle Daten pro Vertex schreiben:
/l x, y, z, color, s, t
pbata->s = ...;
pbata->t = ...;

pData ++;

}

pMeshVB->Unlock() ;

Um [hr 3D-Objekt texturiert zu rendern, mus-
sen Sie Direct3D mitteilen, welche Textur Sie
verwenden wollen, wobei Sie mit heutiger 3D-
Hardware mehrere Texturen gleichzeitig ein-
setzen konnen. Diese Texturierungs-Einheiten
auf der Grafikkarte nennt man, auch wegen
der Verkniipfungen miteinander, Texture Sta-

ges. Fir jede Texture Stage legen Sie die ver-
wendete Textur mit der [Direct3DDevice9.:Set-
Texture Methode fest:

pD3DDevice->SetTexture(0, pTexture);

Die Anzahl der gleichzeitig von der Hardware
unterstiitzten Texturen tiberpriifen Sie anhand
der Device Caps in den Variablen
D3DCAPS.MaxSimultaneousTextureStages
und D3DCAPS9.MaxTextureBlendingStages.

Textur im Eigenbau

Fiir den Fall, dass Sie Texturen selbst in Ihrem
Programm erzeugen und keine Bilddateien
verwenden wollen, bietet die D3DX-Bibliothek
passende Funktionen. Mit der D3DXCreateTex-
ture-Methode legen Sie eine Textur mit beliebi-
gen Aufldsungen und im Texel-Format an. Da-
bei geben Sie den Speicherbereich an, in dem
die Textur liegen soll. Weiterhin bestimmen Sie
die Verwendung, indem Sie die Textur dyna-
misch (d.h. der Inhalt &ndert sich) oder als
Render Target deklarieren. Nur die Fahigkeiten
der Grafikkarte limitieren diese Einstellungen,
weshalb Sie die Caps und die Riickgabewerte
der Methode beachten miissen.

Eine statische Textur, zunachst ohne Inhalt, mit
256x256 Texels, 32-Bit-RGBA-Format und Mip
Maps legen Sie wie folgt an:

D3DXCreateTexture (

pD3DDevice, 256, 256, 0, O,
D3DFMT_A8R8G8B8, D3DPOOL_MANAGED,
pTexture);

Beachten Sie dabei, dass die Parameter der tat-
sachlich erzeugten Textur von den angegebe-
nen abweichen koénnen. Dies bedingt die
D3DXCheckTextureRequirements-Funktion,
mit der Sie Parameter auf ihre Validitét Giber-
priifen. Zudem koénnen Sie ganz darauf ver-
zichten, eine der D3DX-Methoden zu verwen-
den, um die Textur zu erzeugen. Dies kann
z.B. wiinschenswert sein, wenn Sie die D3DX-

Locking Flags fiir LockRect

Bibliothek, die Sie statisch linken miissen,
nicht in lhrem Projekt verwenden wollen. So
erhalten Sie kleinere ausfiithrbare Dateien. In
diesem Fall verwenden Sie die Methode IDi-
rect3DDevice9::CreateTexture. Diese verwen-
det prinzipiell dieselben Parameter, passt die
Parameter aber nicht an:

pD3DDevice->CreateTexture(
256, 256, 0, 0, D3DFMT_A8BR8G8BS,
D3DPOOL_MANAGED, &pTexture, NULL);

Jetzt bleibt noch die Aufgabe, die Textur-Daten
zu Uibergeben. Dazu miissen Sie die Textur per
Lock verschlieen, um auf die Daten zuzugrei-
fen. Nach dem Lock-Befehl koénnen Sie die Da-
ten lesen und/oder schreiben (je nach Modus)
und mit einem Unlock-Befehl die Anderungen
wirksam werden lassen. Das Lock-Kommando
des IDirect3DTexture9 Interface fiillt eine
D3DLOCKED RECT-Struktur aus, in der die
notwendigen Daten fiir den Zugriff stehen:

typedef struct _D3DLOCKED_RECT {

INT Pitch;
void *pBits;
} D3DLOCKED_RECT;
Kugelnde Wiirfel: Eine sphérische Projektion
mit breitem Muster.
@
Schach in 3D: Diese kubische Projektion
mustert den Wiirfel wie ein Schachbrett.

e

-
DN

=9

=g

"’

D3DLOCK_DISCARD
{iberschrieben.

D3DLOCK_NO_DIRTY_UPDATE

dieses Flag.
D3DLOCK_NO_SYSLOCK

D3DLOCK_READONLY

Write-Only-Zugriff auf die Textur, der gesamte Rect-Bereich wird

Dirty Regions sind Bereiche in Texturen, fiir die ein Update zur
Grafikkarte notwendig ist. Wenn Sie nicht wollen, dass der
gerade bearbeitete Bereich als dirty markiert wird, wahlen Sie

Wahrend des Lockings wird das System gestoppt;
dann kénnen andere Tasks weiter arbeiten.

Read-0nly-Zugriff auf die Texture

175

PC Magazin 8/2003 : www.pc-magazin.de

176

PC Magazin 8/2003 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

HRESULT IDirect3DTexture9::LockRect(
UINT Level,
D3DLOCKED_RECT *pLockedRect,
CONST RECT *pRect,
DWORD Flags);

Dabei ist pBits ein Zeiger auf den Speicherbe-
reich der Textur. Pitch gibt den Abstand zweier
Zeilen der Textur im Speicher in Bytes an. Fir
das Locking miissen Sie angeben, was Sie mit
der Textur anstellen wollen. Flags, die Sie mit-
einander kombinieren kénnen, beschreibt die
Tabelle. Um auf die gesamte Textur zuzugrei-
fen, geben Sie fiir pRect den Wert NULL an:

D3DLOCKED_RECT lockedRect;

pTexture->LockRect (
0, &lockedRect, NULL, 0);

Anschlielend fiillen Sie die Textur mit Daten.
Das Beispiel speichert sie im 32-Bit-RGBA-For-
mat. Der Pitch-Wert, den Sie unbedingt beach-
ten missen, ist aber in Bytes angegeben. Die
Quelldaten der Textur, im Array texData gege-
ben, kopieren Sie und geben sie am Ende wie-
der frei:

const int sizeX = 256;
const int sizeY = 256;

DWORD texData[256 * 256] = ...;

BYTE *pDest=(BYTE*)lockedRect.pBits;

DWORD *pSource = texData;

for (y =05y <
{

sizeY; y++)

DWORD *pLine = (DWORD*)
&pDest[y * lockedRect.Pitch 1;

for (x = 0; x < sizeX; Xx++)
*(pLine++) = *(pSource++);

}

pTexture->UnlockRect(0);

Mip Mapping

Bisher haben wir [hnen den ersten Parameter
der LockRect-Methode und die Mip Mapping
Parameter verschwiegen. Um das Mip Map-
ping zu erkléren, folgen Sie uns zu einem Ab-
stecher in die Sampling-Theorie. Das Texture
Mapping bildet eine Textur zunachst per Ren-
dering auf dem Bildschirm ab. Dabei wird fiir
jeden Pixel, der im endgiiltigen Bild gesetzt
wird, der dazugehorige Texel der Textur be-
stimmt und ausgelesen — die Textur also an

Aliasing: Abtast-
Artefakte treten
auf, wenn Sie ohne
Mip Mapping
arbeiten.

Mip Mapping: Wenn
die Aliasing Artefakte
verschwinden, wird
die Darstellung glaub-
hafter.

Eingefarbt: Unter-
schiedlich eingefirbte
Mip Maps tauchen die
Landschaft in buntes
Licht.

verschiedenen Stellen abgetastet. Die Abstan-
de der abgetasteten Texel hédngen von der Ab-
bildung der Textur auf dem Dreieck sowie von
den Betrachter-Parametern ab und bestimmen
somit die Abtastfrequenz. Der Inhalt der Textur
lasst sich wiederum als ein bestimmtes Signal
interpretieren. Die Sampling-Theorie besagt
aber, dass die Abtastung eines Signals mit der
doppelten Frequenz erfolgen muss, wie die
hochste Frequenz in der Signalquelle (unsere
Textur) schwingt.

Daraus lésst sich folgern: Wird eine Textur ver-
kleinert auf dem Bildschirm dargestellt und die
Bildschirmauflésung ist nicht hoch genug, so
treten Abtast-Artefakte bzw. -fehler auf. Fre-
quenzen sind also sichtbar, die in der eigentli-
chen Textur nicht vorhanden sind, so genann-
te Aliasing Effekte.

Um diesem vorzubeugen, setzen Sie Mip Maps
ein. Dabei handelt es sich um niedriger aufge-
16ste Varianten der urspriinglichen Textur, die
die Grafikkarte selbststandig auswahlt, um das
Aliasing zu verwenden. Mip Maps kénnen Sie
entweder automatisch eine Textur erzeugen
lassen, wenn lhre Grafikkarte dies unterstiitzt
(D3DCAPS2_CANAUTOGENMIPMAP), oder ex-
plizit eine Textur angeben. Das néchste Bild
zeigt das Schachbrett-Muster aus dem vorigen
Bild mit Mip Maps, wovon die Qualitat der Dar-
stellung deutlich profitiert. Im Folgenden se-
hen Sie dieselbe Situation mit unterschiedlich
eingefarbten Mip Maps.

Wie eine Textur an einer Koordinate ausgele-
sen wird, bestimmen Sie mit der Methode IDi-
rect3DDevice9.:SetSamplerState. Dabei lasst
sich die Adressierung und die Abtastung ein-
stellen. Bei der Adressierung stellen Sie z.B.
ein, ob eine Textur gekachelt oder ge-clamped
wird, d.h. bei Uberschreiten der Textur-Gren-
zen der letzte Texel wiederholt wird. Interes-
sant im Kontext des Mip Mapping sind die so
genannten Magnification, Minification und
Mip Filter. Beim Fall von Magnification sehen
Sie die Textur grofer auf dem Bildschirm als
sie ist. Beim Auslesen eines einzelnen Texels
koénnen Sie Farbwerte der umgebenden Texel
interpolieren. Die haufigste Technik ist die bi-
lineare Interpolation, welche die vier nachsten
Texel heranzieht. Bei der verkleinerten Darstel-
lung (Minification) sind ebenfalls verschiedene
Abtastmodi wahlbar.

Wie erwahnt, kann die Grafikkarte die entspre-
chende Mip Map Stufe der Textur selbststéandig
wahlen. Es ist auch mdoglich, statt zwischen
zwei Stufen hin und her zu schalten, zwischen
diesen zu interpolieren: das so genannte fri-/i-
neare Filtering.

Diese Einstellungen finden Sie im Beispielpro-
gramm, dessen Wirkungen Sie am Bildschirm
nachvollziehen kénnen.

178

PC Magazin 8/2003 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

Beleuchtet: Unser Beispielprogramm zeigt den Wiirfel, den gleich drei Typen von Lichtquellen
anstrahlen: Directional, Point mit Attenuation und Spot Light.

I
Info

www.microsoft.com/downloads/
details.aspx?FamilylD=124552ff-8363-
47fd-8f3h-36c226e04c85&Display-
Lang=en

www.dachsbacher.de/pcu

www.ati.com

E2 www.nvidia.com

Es werde Licht

Direct3D und heutige Grafikhardware erlaubt
es, die Beleuchtung lokal zu berechnen. Lokal
bedeutet, dass die Farbe einer Oberflache (fir
jeden Vertex) anhand seiner Oberfldchennor-
male, den angegebenen Lichtquellen und der
Betrachterposition berechnet wird. In die Be-
rechnung fliefdt kein reflektiertes Licht anderer
Oberflachen der 3D-Szene ein. Die Auswer-
tung des Beleuchtungsmodells erfolgt meist
pro Vertex, und die berechnete Beleuchtung
durch die Lichtquellen wird {iber ein Dreieck
linear interpoliert. Das Per-Pixel Lighting be-
rechnet die Beleuchtung fiir jedes Fragment
(Pixel), das von der Grafikkarte gezeichnet
wird. Die Berechnung findet dabei entweder
mit Texturierungs-Einheiten oder in Pixel Sha-
der bzw. Fragment Programm bezeichneten
Teilen der Grafik-Pipeline statt. Der Aufwand
beim Rendering fiir Effekte wie Bump Map-
ping ist deutlich hoher. Solche Techniken wer-
den Sie in den folgenden Direct3D-Teilen von
PC Underground kennen lernen.

Zunachst widmen Sie sich den grundlegenden
Verfahren. Wie erwéhnt, benétigen Ihre Verti-
ces fiir die Beleuchtungsberechnung einen
weiteren Parameter: die Oberflachennormale.
Diese erhalten Sie entweder vom Modeling Pro-
gramm, bestimmen Sie bei parametrischen
Flachen aus der Beschreibung oder Sie berech-
nen sie aus einem Dreiecksnetz. Die dazugeho-
rige Flexible Vertex Format Konstante lautet
D3DFVF_NORMAL. Um die Beleuchtungsbe-
rechnung durchzufiihren, miissen Sie die Ma-

terialeigenschaften der Oberflache angeben.
Diese sind in der Struktur D3DMATERIAL9 zu-
sammengefasst, die je einen Farbwert fiir am-
biente, diffuse und spekulare Reflexion und
Lichtemission und einen Float Wert fir das
Phong Modell (Halfway Vektor Variante — siehe
SDK) enthdlt. Die Farbwerte sind vom Typ
D3DCOLORVALUE, der als Struktur aus vier
Float-Werten definiert ist. Diese Struktur fiillen
Sie mit den gewiinschten Werten aus. Die Me-
thode [Direct3DDevice9::SetMaterial bestimmt
die Materialeigenschaften. Folgendes Beispiel
erzeugt ein Material mit rein diffusen Eigen-
schaften:

D3DMATERIAL9 mat;

ZeroMemory (

&mat, sizeof(D3DMATERIALY9));
mat.Diffuse.r =
mat.Diffuse.g
mat.Diffuse.b
mat.Diffuse.a = 1.0f;
pD3DDevice->SetMaterial(&mat);

Fiir die Beleuchtung miissen Sie noch sorgen.
Dafiir stehen Ihnen drei Typen von Lichtquel-
len zur Verfiigung. Der einfachste Typ ist das
Directional Light (D3DLIGHT DIRECTIONAL).
Das ist Licht mit parallelen Strahlen — ver-
gleichbar mit einer unendlich weit entfernten
Punkt-Lichtquelle. Fir solche Lichtquellen ist
die Beleuchtungsberechnung einfach, weil Sie
keine Lichtquellen-Position beriicksichtigen
miissen. Beim zweiten Typ handelt es sich um
die Punkt-Lichtquelle (D3DLIGHT POINT).
Diese Lichtquelle leuchtet von ihrer angegebe-
nen Position radial in alle Richtungen. Die
komplizierteste Lichtquelle in Direct3D ist ein
Spot Light (D3DLIGHT SPOT), die wie ein
Scheinwerfer strahlt.

Die Abstrahlung ist vergleichbar mit der
Punkt-Lichtquelle, ist aber auf einen kegelfor-
migen Bereich beschrankt, den Sie bestim-
men konnen. Alle Lichtquellen-Parameter und
-Definitionen fasst die D3DLIGHT9-Struktur
zusammen. Je nach Lichtquellen-Typ benéti-
gen Sie nur einen Teil oder alle Eintrage dieser
Struktur. Die Parameter umfassen die Farbe
der Lichtquelle fir ambientes, diffuses und

spekulares Licht, die Position und Richtung,
Parameter fiir den Spot Light Kegel und den
maximalen Einflussbereich (ein Abstands-
wert).

Weiterhin ist die Abschwachung (Attenuation)
des Lichts durch einen konstanten, linearen
und quadratischen Koeffizienten (Attenuati-
on0..2) einstellbar. Das bedeutet, die Lichtin-
tensitat wird in Abhédngigkeit vom Abstand d
eines Vertices zur Lichtquelle mit folgendem
Wert multipliziert:

att = 1.0 / (AttenuationO +

Attenuationt * d +
Attenuation2 * d”)

Nach dem Ausfiillen einer D3DLIGHT9-Struktur
ubergeben Sie diese an Direct3D mit der Me-
thode IDirect3DDevice9::SetLight(...). Dabei ist
der erste Parameter ein Null basierter Index,
mit dem die Lichtquelle referenziert wird. Als
zweiten Parameter ibergeben Sie die Adresse
der D3DLIGHT9-Struktur.

Neu definierte Lichtquellen sind zunachst noch
ausgeschaltet. Sie aktivieren Sie mit LightEnab-
le(...): der erste Parameter ist der Lichtquellen-
Index, der zweite ein Bool-Wert, der angibt, ob
die Lichtquelle an- oder ausgeschaltet ist. Die
Anzahl der maximal gleichzeitig aktivierbaren
Lichtquellen entnehmen Sie — wie alle anderen
Device spezifischen Fahigkeiten — den Caps.
Der Eintrag lautet D3DCAPS9.MaxActivelLights.
Um die Parameter fiir eine bestehende Licht-
quelle auszulesen verwenden Sie GetLight(...).
Um festzustellen, ob eine Lichtquelle an oder
aus ist, steht Ihnen die GetLightEnable(...)-Me-
thode zur Verfiigung.

Folgendes Beispiel zeigt, wie Sie ein Direction
Light definieren und anschalten:

D3DLIGHT9 light;
ZeroMemory (

&light, sizeof(D3DLIGHT9));
light.Type = D3DLIGHT_DIRECTIONAL;
light.Direction =

D3DXVECTOR3(0.0f, 0.0f, 1.0f);

light.Diffuse.r = 1.0f;
light.Diffuse.g = 1.0f;
light.Diffuse.b = 1.0f;

pD3DDevice->SetLight(0, &light);
pD3DDevice->LightEnable(0, TRUE);

Als letztes aktivieren Sie noch die Beleuch-
tungsberechnung (allgemein) fiir Direct3D:

pD3DDevice->SetRenderState(
D3DRS_LIGHTING, FALSE);

Die spekulare Beleuchtung miissen Sie separat
anschalten:

pD3DDevice->SetRenderState(
D3DRS_SPECULARENABLE, TRUE);

cet

