
In den ersten beiden Teilen unseres Di-

rect3D-9-Tutorials haben Sie die Grund-

lagen für stabile und effiziente Direct3D-Pro-

gramme kennen gelernt. Für imposante 3D-Ef-

fekte benötigen Sie aber mehr: zum Einen

Daten und 3D-Modelle, zum Anderen die Fä-

higkeit, moderne Grafikkarten zu programmie-

ren. Und genau um diese beiden Punkte küm-

mern Sie sich in diesem Artikel!

Im Falle der hardwarebeschleunigten 3D-Gra-

fik, gibt es zwei Wege, wie die Geometriever-

arbeitung stattfinden kann. In der ersten, be-

reits bekannten, Variante arbeiten Sie mit der

so genannten Fixed Function Pipeline. Dabei

handelt es sich um den Teil der GPU, der die

herkömmliche Transformations- und Beleuch-

tungsberechnung durchführt. Die Funktionali-

tät ist hier fixiert. Sie können lediglich die Ein-

gabedaten festlegen, also z.B. Renderstates,

Lichtquellen und Materialparameter.

Vertex und Pixel Shader

Die Vertex Shader (im OpenGL Kontext Vertex

Programs) können die Fixed Function Pipeline

ersetzen. Anstatt Parameter zu setzen, um die

Pipeline zu konfigurieren, schreiben Sie ein

Vertex Shader Programm, das in der GPU aus-

geführt wird. Ein solches Programm verarbei-

tet jeweils nur einen einzigen Vertex. Sie kön-

nen damit keine Vertices erzeugen oder elimi-

nieren. Solche Programme setzen Sie z. B. ein,

um Koordinaten zu berechnen oder prozedu-

ral Blending oder Deformationen zu erzeugen.

Weiterhin können Sie damit Farbwerte, Textur-

Koordinaten, Nebeleffekte und Punktgrößen

berechnen. Die Ausgabedaten bestehen zu-

mindest aus einer Clip-Space Koordinate, d.h.

Sie müssen die 3D-Transformation des Vertex

vornehmen und optional Farbwerte sowie Tex-

tur-Koordinaten und dergleichen berechnen.

PROGRAMMIERUNG : PC UNDERGROUND

178

PC
 M

ag
az

in
 9

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Direct3D bietet die einheitliche

Schnittstelle, um moderne

Grafikkarten anzusprechen.

Sie programmieren die

Grafikpipeline mit den Vertex

und Pixel Shader. Dadurch

eröffnet sich Ihnen eine Fülle

von Grafikeffekten. Wenn Sie

3D-Modelle ins Wavefront-

Format konvertierten, helfen

Ihnen Modeling-Programme.

Carsten Dachsbacher

Direct-3D-9 – Teil III

Grafik durch die
Pipeline jagen w

or
ks

ho
p

Programmierbar: Die Grafikpipeline bietet zwei Stellen, an denen Sie selbst das Geschehen bestim-
men können: bei den Vertex und Pixel Shader.

Die Vertex Shader erlauben es Ihnen, eine Rei-

he von Grafikeffekten zu programmieren, die

Sie bisher einzeln pro Bild mit der CPU berech-

nen mussten. Das Bild zeigt schematisch das

Konzept der Vertex Shader (GeForce 3) an.

Das Bild Vertex Shader verdeutlicht dies.

Unterschiedliche Grafikhardware bietet ver-

schieden leistungsfähige Vertex Shader an. Je

nach GPU-Modell und -Generation unterschei-

den sich die Anzahl der zur Verfügung stehen-

den Instruktionen pro Programm, die Zahl der

Register und der Befehlsumfang. Die neuesten

Grafikkarten bieten inzwischen auch Schleifen-

befehle an – bisher konnten Sie nur sequentiell

alle Instruktionen abarbeiten!

Mit so genannten Pixel Shader (OpenGL Frag-

ment Programs) programmieren Sie die Re-

chenwerte pro Pixel (bzw. Fragment), also von

Farbwerten. Als solche Erweiterungen wie mit

den nVidias Register Combiner eingeführt

wurden, konnten Sie noch nicht von Program-

mierung sprechen – bestenfalls von Konfigura-

tion: Sie konnten gerade einmal mehrere Be-

rechnungseinheiten hintereinander schalten.

Auch wenn damals schon die tatsächlichen

Einschränkungen der Hardware durch eine Art

Assemblersprache verbessert wurden, ist in-

zwischen ein Punkt erreicht, an dem die Hard-

ware wirklich frei programmierbar ist. Diese

Technik führten Karten wie die ATI Radeon

9500/9700 und nVidia GeForce FX GPUs ein,

die Pixel Shader der Version 2.0 unterstützen.

Vertex Shader in Direct3D

Direct3D bietet im Gegensatz zu OpenGL (was

sich allerdings mit OpenGL 2.0 erübrigen wird)

eine einheitliche Schnittstelle, um program-

mierbare Grafikhardware anzusprechen. Aller-

dings müssen Sie abfragen, was Ihnen die ver-

wendete GPU bietet. Wie bei jeder vergleich-

baren Hardware verwenden Sie die Device

Caps, um die entsprechende Information ab-

zufragen. Um zu überprüfen, ob eine be-

stimmte Vertex Shader Version unterstützt

wird, verwenden Sie folgende Zeilen:

D3DCAPS9 caps;
pD3D->GetDeviceCaps(
D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL, &caps);

if (caps.VertexShaderVersion <
D3DVS_VERSION(1,0))

// keine Vertex Shader

Wenn keine Vertex Shader unterstützt werden,

dann schlägt der obige Test fehl, überprüft

aber weiter, ob wenigstens Version 1.0 unter-

stützt wird. Wenn Sie eine GeForce 3, Radeon

8500 oder neuere Grafikkarte besitzen, wird

zumindest Version 1.1 unterstützt, die schon

beachtliche Optionen bietet. Mit Vertex Shader

2.0 programmieren Sie zusätzlich Schleifen.

Version 3 hingegen gibt es bislang nur auf dem

Papier – es gibt noch keine Grafikhardware,

die diese unterstützt.

Im Folgenden beschränken wir uns, ohne den

Bezug zur Allgemeingültigkeit zu verlieren, auf

Vertex Shader 1.1. Wie Sie in Bild Vertex Sha-

der bereits gesehen haben, verfügen Sie über

eine bestimmte Anzahl von Registern: Ein- und

Ausgabe, Temporär-, Konstanten- und Adress-

Register. Jedes Register ist ein Vektor, der aus

vier Floating Point Zahlen besteht. Mit den

Konstanten-Registern können Sie Daten von

Ihrer Applikation an den Vertex Shader über-

geben. Die Zahl der dazu zur Verfügung ste-

henden Konstanten-Register ist wieder in der

Routine D3DCAPS9.MaxVertexShaderConst

enthalten. Einen Überblick über die Register

erhalten Sie in den beiden Tabellen.

Inzwischen gibt es eine Reihe verschiedener

Wege, ein Vertex Shader Programm anzuge-

ben. Die klassische Variante, die auch dieser

Artikel verwendet, setzt auf eine Art Assemb-

lersprache. Andere Varianten wären beispiels-

weise nVidias Cg oder die High-Level Shading

Language (HLSL) von Direct3D, in denen Sie

in einer C Syntax programmieren. Solche

Hochsprachen bieten vor allem den Vorteil,

einfache Teile eines Programms wiederzuver-

wenden und modular zu programmieren. Für

komplexere Grafikeffekte werden Sie auch auf

diese Variante zurückgreifen.

Nun geht es darum, Ihren ersten Vertex Shader

zu programmieren. Den vollständigen Befehls-

satz finden Sie am einfachsten, indem Sie in der

DirectX9-Hilfe im Index vertex shader 1_1 ein-

geben. Zunächst legen Sie für das Programm ei-

ne Textdatei an, die Sie dann z.B. in Ihr Visual

Studio Projekt einfügen. Ein solches Programm

beginnt immer mit der Kennung und Versions-

nummer, also in unserem Fall vs.1.1.

Wenn Sie Konstanten für Ihr Vertex Shader

Programm definieren möchten, tun Sie das

gleich im Anschluss. Die folgende Zeile be-

schreibt das Konstanten Register c10 mit vier

Float Werten:

def c10, 0.25, 0.5, 0.75, 1.0

Anschließend müssen Sie spezifizieren, wel-

che Eingabedaten Sie verwenden wollen. Zu-

nächst sollen die Vertex Koordinaten genügen,

die im ersten Attribut Register für Vertices (v0)

stehen. Dazu verwenden Sie:

dcl_position v0

Ihr erstes Programm soll nicht mehr tun, als

die Vertices zu transformieren und jedem

179

PC
 M

ag
az

in
 9

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Quelltexte sowie fertig übersetzte Routinen > CD
Praxis/Programmierung/PC Underground

Vertex Shader: Sie sehen den schematischen
Aufbau – am Beispiel einer GeForce 3 GPU.

Die Input Register der Vertex Shader 1.1

Name Typ Anzahl Daten Zugriff

a0 Adressregister 1 Integer schreiben/adressieren

c# Float Konstante mind. 96 4 x Float definieren/lesen

r# Arbeitsregister 12 4 x Float schreiben/lesen

v# Vertex Parameter 16 4 x Float lesen

Nur Schreibzugriff auf die Output Register (VS 1.1

Name Typ Daten

oD0/oD1 diffuse/spekulare Farbe je 4 x Float

oFog Nebel Intensität 1 x Float

oPos Position* 4 x Float

oPts Punktgröße 1 x Float

oT# 8 Texture Koordinaten je 4 x Float
* Alle vier Komponenten müssen von einem Vertex Programm gesetzt werden.

Vertex eine Konstante Farbe zu verpassen. Die

Transformation erledigen Sie durch eine Mul-

tiplikation der entsprechenden 4x4-Matrix, die

in den Konstantenregistern c0-c3 und der Ein-

gabeposition gespeichert ist:

m4x4 oPos, v0, c0

Der m4x4 Befehl ist dabei lediglich ein Makro.

Tatsächlich werden vier Kreuzprodukte ausge-

führt, die genau das Matrix-Vektor-Produkt dar-

stellen. Den eben angesprochenen Farbwert

geben Sie den Vertices so mit:

mov oD0, c10

Nun fragen Sie sich vielleicht, woher kennt der

Vertex Shader die Matrix? Hier sind wir am

Punkt der Integration des Shaders in die Appli-

kation angelangt. Glücklicherweise bietet die

D3DX-Bibliothek wieder eine Reihe von nütz-

lichen Befehlen. Als erstes benötigen Sie eine Va-

riable vom entsprechenden Typ, also einen Zei-

ger auf ein IDirect3DVertexShader9-Interface:

LPDIRECT3DVERTEXSHADER9
pVertexShader = NULL;

Mit D3DX können Sie den Vertex Shader kom-

pilieren und in einem Speicherbereich, den ein

D3DXBUFFER-Objekt verwaltet, ablegen:

DWORD flags = 0;
LPD3DXBUFFER pCode;
D3DXAssembleShaderFromFile(„vs.txt“,
NULL, NULL, flags, &pCode, NULL);

Daraus können Sie Direct3D das Vertex Shader

Objekt erzeugen lassen und den Speicher wie-

der freigeben:

pD3DDevice->CreateVertexShader(
(DWORD*)pCode->GetBufferPointer(),
&pVertexShader);

pCode->Release();

Wenn Sie Ihr Programm weitergeben wollen,

aber der Quelltext des Vertex Shaders nicht als

Textdatei sichtbar sein soll, können Sie auch

das Kompilat in eine Datei schreiben, oder

später anderweitig zu Ihrem Programm lin-

ken:

FILE *f = fopen(„vs.comp“, „wb“);
fwrite(
pCode->GetBufferPointer(), 1,
pCode->GetBufferSize(), f);

fclose(f);

Jetzt müssen Sie beim Rendering nur noch mit-

teilen, dass Sie den Vertex Shader verwenden

wollen. Das geht mit einem einzigen Befehl:

pD3DDevice->
SetVertexShader(pVertexShader);

Jetzt verwendet Direct3D den Vertex Shader

statt der herkömmlichen Transform&Lighting

Stufe der Fixed Function Pipeline solange, bis

Sie die obige Funktion mit null als Parameter

aufrufen.

Als letztes bleibt also die Aufgabe, die benötig-

ten Konstantenregister zu setzen, in unserem

Beispiel also die Transformationsmatrix. Diese

Matrix muss die Vertices vom Object Space in

den World Space und weiter in den Clip Space

transformieren. Wenn Sie diese Transformatio-

nen einzeln bestimmt haben (wie aus den letz-

ten Ausgaben bekannt), können Sie die benö-

tigte Matrix durch Konkatenation bestimmen:

D3DXMATRIX modelViewProjection
= matWorld * matView * mProjection;

Um den Inhalt der Konstanten-Register für den

gerade aktuellen Vertex Shader zu definieren,

verwenden Sie den SetVertexShaderCon-

stantF-Befehl. Damit übergeben Sie einen oder

mehrere Vektoren, die aus vier Floats beste-

hen. Der erste Parameter ist dabei der Index

des ersten Konstanten-Registers, das beschrie-

ben wird:

pD3DDevice->
SetVertexShaderConstantF
(0,(float*)modelViewProjection, 4);

Jetzt können Sie wie schon bekannt, z.B. mit

Vertex Buffers, rendern, nur die Transformati-

on übernimmt jetzt Ihr Vertex Shader.

Pixel Shader in Direct3D

Pixel Shader definieren Sie in Direct3D nahezu

analog zu Vertex Shaders. Auch hier beschrän-

ken wir uns zunächst auf die Assemblerspra-

che und die Pixel Shader Version 1.1. Ein Pixel

Shader Programm, für dessen kompletten Be-

fehlssatz wir wieder auf die DirectX-Hilfe ver-

weisen, beginnt wieder mit der Kennung und

eventuellen Konstantendefinitionen. Anschlie-

ßend geben Sie an, welche Texturen Sie ausle-

sen wollen. Wenn Sie die erste Textur-Stage (an

der entsprechenden Stelle) auslesen – auch

sample genannt –, geben Sie den Befehl ein:

tex t0

Damit steht Ihnen das Resultat, also der ausge-

lesene Farbwert im Register t0 zur Verfügung.

Weitere typische Instruktionen sind

Addition/Subtraktion (add/sub), Multiply-and-

Add (mad) und natürlich Move (mov).

Wenn Sie beispielsweise normale Textur aus-

lesen, modulieren und mit der diffusen Farbe

nachprogrammieren wollen, tun Sie das mit

folgendem Befehl:

mul r0, t0, v0

Dabei ist t0 das Register mit der Farbe aus der

Textur, v0 das Eingaberegister der diffusen Far-

be und r0 ein Arbeitsregister, das gleichzeitig

auch das Ausgaberegister für den endgültigen

Farbwert ist.

Sie aktivieren Pixel Shaders analog wie Vertex

Shaders, wobei Sie lediglich den Term Ver-

texShader durch PixelShader ersetzen.

Im Folgenden zeigen wir Ihnen eine einfache

Technik, die beim Rendering den Eindruck von

Strichzeichnungen erwecken soll. Die Umset-

zung demonstrieren wir Ihnen anhand von ei-

nem Vertex und Pixel Shader.

Hatching

Die Technik, mit Strichen zu zeichnen, wird

auch Hatching genannt. Natürlich ist es nicht

ganz einfach, den Eindruck von Strichzeich-

nungen per Grafikhardware zu erwecken.

Denn dazu müssen Sie recht kompliziert Tex-

PROGRAMMIERUNG : PC UNDERGROUND

180

PC
 M

ag
az

in
 9

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Strichzeichnung: Mit diesen Texturen errei-
chen Sie Hatching-Effekte.

Summe gleich eins:
Die Gewichte der Hat-
ching-Texturen.

Abwechslung: Ein
bekanntes OBJ-
Modell dargestellt mit
Materialparametern,
diffuser Beleuchtung
und Hatching.

tur Koordinaten und viele Texturen generieren.

Exemplarisch zeigen wir Ihnen an dieser Stel-

le, was Sie mit einfachen Mitteln und einem

Single Pass Rendering Verfahren ohne großen

Aufwand bewirken können.

Das Prinzip ist folgendes: Sie berechnen zu-

nächst eine diffuse Beleuchtung, bilden also

ein Skalarprodukt zwischen Normale und

Lichtrichtung. Dadurch erhalten Sie einen Wert

im Intervall zwischen -1 und +1 – negative

Werte setzen Sie aber auf Null.

Was Sie noch brauchen, ist eine Reihe von

Texturen, die unterschiedlich dunkel schraffier-

te handgezeichnete Bereiche zeigen. Je nach

berechnetem Helligkeitswert soll die entspre-

chende Textur zum Zeichnen ausgewählt und

verwendet werden. Bei vier verwendeten Tex-

turen (so viele sind bei den meisten Grafikkar-

ten in einem Renderpass addressierbar), stün-

de Texture 0 für das Intervall [0;0.25], Texture

1 für [0.25;0.5] usw.

Eine harte Auswahl der Textur würde aller-

dings keine sehr schönen Ergebnisse liefern,

vielmehr ist eine Interpolation von den jeweils

zwei nächsten Texturen wünschenswert. Das

Bild Summe gleich eins zeigt die Gewichtung

der einzelnen Texturen – unterschiedlich ein-

gefärbt – in Abhängigkeit von der berechneten

Helligkeit. Mit dieser Gewichtung ist sicher ge-

stellt, dass die Summe aller Gewichte gleich

eins ist. Das wiederum ermöglicht es, jeweils

die Farbwerte der vier Texturen mit dem ent-

sprechenden Gewicht zu multiplizieren und al-

le aufzusummieren. Und das ist genau das,

was unsere Beispiel-Shader tun sollen. Sie

müssen dabei beachten, dass es die Striche in

den Texturen sind, die wir gewichten wollen,

deshalb müssen Sie die Texturen aus dem Bild

Strichzeichnung invertiert verwenden.

Betrachten Sie nun also die Shader im Einzel-

nen. Der Vertex Shader benötigt als Eingabe

die Vertex Position, die Normale und die fol-

genden Konstanten. Die Position wird normal

transformiert:

vs.1.1
def c11, 0.0, 0.33, 0.66, 1.0

dcl_position v0
dcl_normal v1
m4x4 oPos, v0, c0

Nun benötigen Sie, sofern für das 3D-Modell

keine Textur-Koordinaten für das Hatching vor-

handen sind, eben solche. Das Einfachste ist

eine planare Projektion, deren Resultat für alle

vier Textur Stage verwendet wird:

mul r0, v0.xyzw, c13
mov oT0, r0

Anschließend kommt der trickreiche Teil. Die-

ser berechnet zunächst die diffuse Beleuch-

tung. Negative Werte setzen Sie Null (max), im

Konstantenregister c4 steht dabei die Lichtrich-

tung:

dp3 r0, v1, c4
max r0, r0, c15

An dieser Stelle enthält das r0-Register in jeder

Komponente die Helligkeit der Oberfläche

[0;1]. Es gilt, daraus die vier Gewichte zu be-

stimmen. Dazu wird der Betrag des Abstands

des Helligkeitswertes von den Maxima der Ge-

wichtsfunktionen berechnet.

sub r0, c11, r0
max r0, r0, -r0

Durch entsprechende Skalierung und Inversi-

on erhalten Sie genau die vier Gewichte in den

Komponenten von r0:

mul r0, r0, c14
sub r0, c12, r0

Als letzte Aufgabe geben Sie die Daten an die

Pixel Shader weiter. Pixel Shader 1.1 können

nur sehr eingeschränkt auf Daten zugreifen.

Farbwerte können Sie nur in oD0 und oD1

übergeben, wobei Sie aber jeweils nur ge-

trennt auf die ersten drei (RGB) oder die letzte

Komponente (Alpha) zugreifen können. Des-

halb bleibt nur folgendes:

mov oD0, r0.x

Der Pixel Shader muss nun noch die gewich-

tete Summe der Texturen berechnen. Sie defi-

nieren Konstanten und lesen die Texturen aus:

ps.1.1
def c1, 1.0, 1.0, 1.0, 1.0
tex t0 ...

Anschließend gewichten Sie den ersten Textur

Wert durch Multiplikation mit dem Gewicht

aus dem Vertex Shader:

mul r0, t0, v0

Analog gehen Sie mit den drei weiteren Textu-

ren vor, allerdings verwenden Sie den Multiply-

Add-Befehl, um gleich die Summe mit den

Zwischenergebnis zu erhalten:

mad r0, t1, v0.a, r0...

Zuletzt müssen Sie nur noch die Inversion der

Texturen umkehren:

sub r0, c1, r0

Datensätze einfach einlesen

Bei der Programmierung von Grafiken bleibt

die Frage, wie und woher Ihre Daten für die

Modelle kommen. Deshalb enthält unser Bei-

spielprogramm nun eine Klasse, mit der Sie

Dateien im Wavefront-Format (.obj) lesen

können.

Dabei handelt es sich um ein weit verbreitetes

Format, das viele Modeling-Programme unter-

stützen. Es kann sowohl Dreiecksnetze als

auch parametrische Flächen speichern. Die

.obj-Dateien sind Text basiert und daher sehr

einfach einzulesen. Eine gute Quelle für Do-

kumentationen für Dateiformate aller Art

finden Sie unter www.wotsit.org. Die wichtigs-

ten Tokens finden Sie in der letzten Tabelle auf-

gelistet.

Viele freie Modelle finden Sie unter: www.
3dcafe.com : et

181

PC
 M

ag
az

in
 9

/2
00

3
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Die wichtigsten Tokens im Wavefront-Format (.obj)

Token/Syntax Beschreibung

text Kommentarzeile

v float float float Definition einer Vertex Position, Indizierung beginnt bei 1

vn float float float Definition einer Normalen, Indizierung ab 1

vt float float Definition einer Texture Koordinate, Indizierung ab 1

f int int int ... Polygon definiert durch Vertex Indizes

f int/int int/int ... Polygon definiert durch Vertices und Texture Koordinaten Indizes

f int/int/int ... Polygon mit Vertex, Texture und Normalen Index

Palast: Dieses 3D-Modell, dargestellt mit unse-
rem Beispielprogramm, gibt es bei 3D-Cafe.

