178

PC Magazin 9/2003 : www.pc-magazin.de

PROGRAMMIERUNG :

Direct3D bietet die einheitliche
Schnittstelle, um moderne
Grafikkarten anzusprechen.
Sie programmieren die
Grafikpipeline mit den Vertex
und Pixel Shader. Dadurch
erdffnet sich Ihnen eine Fiille
von Grafikeffekten. Wenn Sie
3D-Modelle ins Wavefront-
Format konvertierten, helfen
lhnen Modeling-Programme.

Carsten Dachsbacher

PC UNDERGROUND

Direct-3D-9 - Teil lll

Grafik durch die
Pipeline jagen

In den ersten beiden Teilen unseres Di-

rect3D-9-Tutorials haben Sie die Grund-
lagen fiir stabile und effiziente Direct3D-Pro-
gramme kennen gelernt. Fiir imposante 3D-Ef-
fekte benotigen Sie aber mehr: zum Einen
Daten und 3D-Modelle, zum Anderen die Fa-
higkeit, moderne Grafikkarten zu programmie-
ren. Und genau um diese beiden Punkte kiim-
mern Sie sich in diesem Artikel!
Im Falle der hardwarebeschleunigten 3D-Gra-
fik, gibt es zwei Wege, wie die Geometriever-
arbeitung stattfinden kann. In der ersten, be-
reits bekannten, Variante arbeiten Sie mit der
so genannten Fixed Function Pipeline. Dabei
handelt es sich um den Teil der GPU, der die
herkémmliche Transformations- und Beleuch-
tungsberechnung durchfiihrt. Die Funktionali-
tat ist hier fixiert. Sie kdnnen lediglich die Ein-
gabedaten festlegen, also z.B. Renderstates,
Lichtquellen und Materialparameter.

Vertex und Pixel Shader

Die Vertex Shader (im OpenGL Kontext Vertex
Programs) kénnen die Fixed Function Pipeline
ersetzen. Anstatt Parameter zu setzen, um die
Pipeline zu konfigurieren, schreiben Sie ein
Vertex Shader Programm, das in der GPU aus-
gefithrt wird. Ein solches Programm verarbei-
tet jeweils nur einen einzigen Vertex. Sie kon-
nen damit keine Vertices erzeugen oder elimi-
nieren. Solche Programme setzen Sie z. B. ein,
um Koordinaten zu berechnen oder prozedu-
ral Blending oder Deformationen zu erzeugen.
Weiterhin konnen Sie damit Farbwerte, Textur-
Koordinaten, Nebeleffekte und Punktgrofien
berechnen. Die Ausgabedaten bestehen zu-
mindest aus einer Clip-Space Koordinate, d.h.
Sie miissen die 3D-Transformation des Vertex
vornehmen und optional Farbwerte sowie Tex-
tur-Koordinaten und dergleichen berechnen.

men konnen: bei den Vertex und Pixel Shader.

Programmierbar: Die Grafikpipeline bietet zwei Stellen, an denen Sie selbst das Geschehen bestim-

Quelltexte sowie fertig iibersetzte Routinen > CD
Praxis/Programmierung/PC Underground

Die Vertex Shader erlauben es Ihnen, eine Rei-
he von Grafikeffekten zu programmieren, die
Sie bisher einzeln pro Bild mit der CPU berech-
nen mussten. Das Bild zeigt schematisch das
Konzept der Vertex Shader (GeForce 3) an.
Das Bild Vertex Shader verdeutlicht dies.
Unterschiedliche Grafikhardware bietet ver-
schieden leistungsféhige Vertex Shader an. Je
nach GPU-Modell und -Generation unterschei-
den sich die Anzahl der zur Verfiigung stehen-
den Instruktionen pro Programm, die Zahl der
Register und der Befehlsumfang. Die neuesten
Grafikkarten bieten inzwischen auch Schleifen-
befehle an — bisher konnten Sie nur sequentiell
alle Instruktionen abarbeiten!

Mit so genannten Pixel Shader (OpenGL Frag-
ment Programs) programmieren Sie die Re-
chenwerte pro Pixel (bzw. Fragment), also von
Farbwerten. Als solche Erweiterungen wie mit
den nVidias Register Combiner eingefiihrt
wurden, konnten Sie noch nicht von Program-
mierung sprechen — bestenfalls von Konfigura-
tion: Sie konnten gerade einmal mehrere Be-
rechnungseinheiten hintereinander schalten.
Auch wenn damals schon die tatsdchlichen
Einschrankungen der Hardware durch eine Art
Assemblersprache verbessert wurden, ist in-
zwischen ein Punkt erreicht, an dem die Hard-
ware wirklich frei programmierbar ist. Diese
Technik fithrten Karten wie die ATI Radeon
9500/9700 und nVidia GeForce FX GPUs ein,
die Pixel Shader der Version 2.0 unterstiitzen.

Vertex Shader in Direct3D

Direct3D bietet im Gegensatz zu OpenGL (was
sich allerdings mit OpenGL 2.0 eriibrigen wird)
eine einheitliche Schnittstelle, um program-
mierbare Grafikhardware anzusprechen. Aller-
dings missen Sie abfragen, was Ihnen die ver-
wendete GPU bietet. Wie bei jeder vergleich-
baren Hardware verwenden Sie die Device
Caps, um die entsprechende Information ab-
zufragen. Um zu iberpriifen, ob eine be-
stimmte Vertex Shader Version unterstiitzt
wird, verwenden Sie folgende Zeilen:

D3DCAPS9 caps;
pD3D->GetDeviceCaps (
D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL, &caps);
if (caps.VertexShaderVersion <
D3DVS_VERSION(1,0))
/1 keine Vertex Shader

Wenn keine Vertex Shader unterstiitzt werden,
dann schlagt der obige Test fehl, Giberpriift
aber weiter, ob wenigstens Version 1.0 unter-
stiitzt wird. Wenn Sie eine GeForce 3, Radeon
8500 oder neuere Grafikkarte besitzen, wird
zumindest Version 1.1 unterstiitzt, die schon
beachtliche Optionen bietet. Mit Vertex Shader

Die Input Register der Vertex Shader 1.1

a0 Adressregister 1

c# Float Konstante mind. 96
r# Arbeitsregister 12

v# Vertex Parameter 16

Integer schreiben/adressieren
4 x Float definieren/lesen

4 x Float schreiben/lesen

4 x Float lesen

e
Nur Schreibzugriff auf die Output Register (VS 1.1

oD0/oD1 diffuse/spekulare Farbe je 4 x Float
oFog Nebel Intensitat 1 x Float
oPos Position” 4x Float
oPts PunktgroRRe 1 x Float
oT# 8 Texture Koordinaten je 4 x Float

* Alle vier Komponenten miissen von einem Vertex Programm gesetzt werden.

2.0 programmieren Sie zusétzlich Schleifen.
Version 3 hingegen gibt es bislang nur auf dem
Papier — es gibt noch keine Grafikhardware,
die diese unterstiitzt.

Im Folgenden beschranken wir uns, ohne den
Bezug zur Allgemeingtiltigkeit zu verlieren, auf
Vertex Shader 1.1. Wie Sie in Bild Vertex Sha-
der bereits gesehen haben, verfiigen Sie liber
eine bestimmte Anzahl von Registern: Ein- und
Ausgabe, Temporar-, Konstanten- und Adress-
Register. Jedes Register ist ein Vektor, der aus
vier Floating Point Zahlen besteht. Mit den
Konstanten-Registern konnen Sie Daten von
lhrer Applikation an den Vertex Shader tiber-
geben. Die Zahl der dazu zur Verfiigung ste-
henden Konstanten-Register ist wieder in der
Routine D3DCAPS9.MaxVertexShaderConst
enthalten. Einen Uberblick {iber die Register
erhalten Sie in den beiden Tabellen.
Inzwischen gibt es eine Reihe verschiedener
Wege, ein Vertex Shader Programm anzuge-
ben. Die Kklassische Variante, die auch dieser
Artikel verwendet, setzt auf eine Art Assemb-
lersprache. Andere Varianten waren beispiels-
weise nVidias Cg oder die High-Level Shading
Language (HLSL) von Direct3D, in denen Sie
in einer C Syntax programmieren. Solche
Hochsprachen bieten vor allem den Vorteil,
einfache Teile eines Programms wiederzuver-
wenden und modular zu programmieren. Fir
komplexere Grafikeffekte werden Sie auch auf
diese Variante zuriickgreifen.

Nun geht es darum, Ihren ersten Vertex Shader
zu programmieren. Den vollstdndigen Befehls-
satz finden Sie am einfachsten, indem Sie in der
DirectX9-Hilfe im Index vertex shader 1_1 ein-

B

Vertex Shader: Sie sehen den schematischen
Aufbau — am Beispiel einer GeForce 3 GPU.

geben. Zunachst legen Sie fiir das Programm ei-
ne Textdatei an, die Sie dann z.B. in Ihr Visual
Studio Projekt einfiigen. Ein solches Programm
beginnt immer mit der Kennung und Versions-
nummet, also in unserem Fall vs.1.1.

Wenn Sie Konstanten fiir Ihr Vertex Shader
Programm definieren mochten, tun Sie das
gleich im Anschluss. Die folgende Zeile be-
schreibt das Konstanten Register ¢/0 mit vier
Float Werten:

def c10, 0.25, 0.5, 0.75, 1.0

AnschlieBend miissen Sie spezifizieren, wel-
che Eingabedaten Sie verwenden wollen. Zu-
ndachst sollen die Vertex Koordinaten gentigen,
die im ersten Attribut Register fiir Vertices (v0)
stehen. Dazu verwenden Sie:

dcl_position vO

[hr erstes Programm soll nicht mehr tun, als
die Vertices zu transformieren und jedem

179

PC Magazin 9/2003 : www.pc-magazin.de

PC Magazin 9/2003 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

Vertex eine Konstante Farbe zu verpassen. Die
Transformation erledigen Sie durch eine Mul-
tiplikation der entsprechenden 4x4-Matrix, die
in den Konstantenregistern c0-c3 und der Ein-
gabeposition gespeichert ist:

m4x4 oPos, vO0, cO

Der m4x4 Befehl ist dabei lediglich ein Makro.
Tatsachlich werden vier Kreuzprodukte ausge-
fihrt, die genau das Matrix-Vektor-Produkt dar-
stellen. Den eben angesprochenen Farbwert
geben Sie den Vertices so mit:

mov oDO, c10

Nun fragen Sie sich vielleicht, woher kennt der
Vertex Shader die Matrix? Hier sind wir am
Punkt der Integration des Shaders in die Appli-
kation angelangt. Glicklicherweise bietet die
D3DX-Bibliothek wieder eine Reihe von niitz-
lichen Befehlen. Als erstes benétigen Sie eine Va-
riable vom entsprechenden Typ, also einen Zei-
ger auf ein IDirect3DVertexShader9-Interface:

LPDIRECT3DVERTEXSHADER9
pVertexShader = NULL;

Mit D3DX koénnen Sie den Vertex Shader kom-
pilieren und in einem Speicherbereich, den ein
D3DXBUFFER-Objekt verwaltet, ablegen:

DWORD flags = 0;

LPD3DXBUFFER pCode;

D3DXAssembleShaderFromFile(,vs.txt“,
NULL, NULL, flags, &pCode, NULL);

Daraus konnen Sie Direct3D das Vertex Shader
Objekt erzeugen lassen und den Speicher wie-
der freigeben:

chen Sie Hatching-Effekte.

pD3DDevice->CreateVertexShader(
(DWORD*)pCode ->GetBufferPointer(),
&pVertexShader);
pCode->Release();

Wenn Sie Ihr Programm weitergeben wollen,
aber der Quelltext des Vertex Shaders nicht als
Textdatei sichtbar sein soll, konnen Sie auch
das Kompilat in eine Datei schreiben, oder
spater anderweitig zu lhrem Programm lin-
ken:

FILE *f = fopen(,vs.comp“, ,wb“);
fwrite(
pCode->GetBufferPointer(), 1,
pCode->GetBufferSize(), f);
fclose(T);

Jetzt miissen Sie beim Rendering nur noch mit-
teilen, dass Sie den Vertex Shader verwenden
wollen. Das geht mit einem einzigen Befehl:

pD3DDevice->
SetVertexShader(pVertexShader);

Jetzt verwendet Direct3D den Vertex Shader
statt der herkdmmlichen Transformé&Lighting
Stufe der Fixed Function Pipeline solange, bis
Sie die obige Funktion mit null als Parameter
aufrufen.

Als letztes bleibt also die Aufgabe, die benotig-
ten Konstantenregister zu setzen, in unserem
Beispiel also die Transformationsmatrix. Diese
Matrix muss die Vertices vom Object Space in
den World Space und weiter in den Clip Space
transformieren. Wenn Sie diese Transformatio-
nen einzeln bestimmt haben (wie aus den letz-
ten Ausgaben bekannt), kénnen Sie die beno-
tigte Matrix durch Konkatenation bestimmen:

D3DXMATRIX modelViewProjection
= matWorld * matView * mProjection;

Um den Inhalt der Konstanten-Register fiir den
gerade aktuellen Vertex Shader zu definieren,
verwenden Sie den SetVertexShaderCon-
stantF-Befehl. Damit (ibergeben Sie einen oder

Gewicht

Summe gleich eins:
- Die Gewichte der Hat-

Helligkeit | ching-Texturen.

Abwechslung: Ein
bekanntes OBJ-
Modell dargestellt mit
| Materialparametern,
diffuser Beleuchtung
und Hatching.

mehrere Vektoren, die aus vier Floats beste-
hen. Der erste Parameter ist dabei der Index
des ersten Konstanten-Registers, das beschrie-
ben wird:

pD3DDevice->
SetVertexShaderConstantF
(0, (float*)modelViewProjection, 4);

Jetzt kdnnen Sie wie schon bekannt, z.B. mit
Vertex Buffers, rendern, nur die Transformati-
on iibernimmt jetzt [hr Vertex Shader.

Pixel Shader in Direct3D

Pixel Shader definieren Sie in Direct3D nahezu
analog zu Vertex Shaders. Auch hier beschran-
ken wir uns zundchst auf die Assemblerspra-
che und die Pixel Shader Version 1.1. Ein Pixel
Shader Programm, fiir dessen kompletten Be-
fehlssatz wir wieder auf die DirectX-Hilfe ver-
weisen, beginnt wieder mit der Kennung und
eventuellen Konstantendefinitionen. Anschlie-
Bend geben Sie an, welche Texturen Sie ausle-
sen wollen. Wenn Sie die erste Textur-Stage (an
der entsprechenden Stelle) auslesen — auch
sample genannt —, geben Sie den Befehl ein:

tex t0

Damit steht [hnen das Resultat, also der ausge-
lesene Farbwert im Register ¢0 zur Verfiigung.
Weitere typische Instruktionen sind
Addition/Subtraktion (add/sub), Multiply-and-
Add (mad) und natiirlich Move (mov).

Wenn Sie beispielsweise normale Textur aus-
lesen, modulieren und mit der diffusen Farbe
nachprogrammieren wollen, tun Sie das mit
folgendem Befehl:

mul rO, t0, vO

Dabei ist t0 das Register mit der Farbe aus der
Textur, v0 das Eingaberegister der diffusen Far-
be und r0 ein Arbeitsregister, das gleichzeitig
auch das Ausgaberegister fiir den endgiiltigen
Farbwert ist.

Sie aktivieren Pixel Shaders analog wie Vertex
Shaders, wobei Sie lediglich den Term Ver-
texShader durch PixelShader ersetzen.

Im Folgenden zeigen wir lhnen eine einfache
Technik, die beim Rendering den Eindruck von
Strichzeichnungen erwecken soll. Die Umset-
zung demonstrieren wir lhnen anhand von ei-
nem Vertex und Pixel Shader.

Hatching

Die Technik, mit Strichen zu zeichnen, wird
auch Hatching genannt. Natiirlich ist es nicht
ganz einfach, den Eindruck von Strichzeich-
nungen per Grafikhardware zu erwecken.
Denn dazu miissen Sie recht kompliziert Tex-

tur Koordinaten und viele Texturen generieren.
Exemplarisch zeigen wir Ihnen an dieser Stel-
le, was Sie mit einfachen Mitteln und einem
Single Pass Rendering Verfahren ohne grofien
Aufwand bewirken konnen.

Das Prinzip ist folgendes: Sie berechnen zu-
néchst eine diffuse Beleuchtung, bilden also
ein Skalarprodukt zwischen Normale und
Lichtrichtung. Dadurch erhalten Sie einen Wert
im Intervall zwischen -/ und +/ — negative
Werte setzen Sie aber auf Null.

Was Sie noch brauchen, ist eine Reihe von
Texturen, die unterschiedlich dunkel schraffier-
te handgezeichnete Bereiche zeigen. Je nach
berechnetem Helligkeitswert soll die entspre-
chende Textur zum Zeichnen ausgewéhlt und
verwendet werden. Bei vier verwendeten Tex-
turen (so viele sind bei den meisten Grafikkar-
ten in einem Renderpass addressierbar), stiin-
de Texture 0 fir das Intervall [0,0.25], Texture
1 fir [0.25;0.5] usw.

Eine harte Auswahl der Textur wiirde aller-
dings keine sehr schonen Ergebnisse liefern,
vielmehr ist eine Interpolation von den jeweils
zwei ndchsten Texturen wiinschenswert. Das
Bild Summe gleich eins zeigt die Gewichtung
der einzelnen Texturen — unterschiedlich ein-
gefarbt — in Abhéngigkeit von der berechneten
Helligkeit. Mit dieser Gewichtung ist sicher ge-
stellt, dass die Summe aller Gewichte gleich
eins ist. Das wiederum ermaoglicht es, jeweils
die Farbwerte der vier Texturen mit dem ent-
sprechenden Gewicht zu multiplizieren und al-
le aufzusummieren. Und das ist genau das,
was unsere Beispiel-Shader tun sollen. Sie
miissen dabei beachten, dass es die Striche in
den Texturen sind, die wir gewichten wollen,
deshalb miissen Sie die Texturen aus dem Bild
Strichzeichnung invertiert verwenden.
Betrachten Sie nun also die Shader im Einzel-
nen. Der Vertex Shader benétigt als Eingabe
die Vertex Position, die Normale und die fol-
genden Konstanten. Die Position wird normal
transformiert:

vs.1.1
def c11, 0.0, 0.33, 0.66, 1.0

dcl_position vO

dcl_normal vi

m4x4 oPos, vO0, cO

Nun benétigen Sie, sofern fiir das 3D-Modell
keine Textur-Koordinaten fiir das Hatching vor-
handen sind, eben solche. Das Einfachste ist
eine planare Projektion, deren Resultat fiir alle
vier Textur Stage verwendet wird:

mul r0O, vO.xyzw, c13
mov oTO, rO

Anschliefend kommt der trickreiche Teil. Die-
ser berechnet zunéchst die diffuse Beleuch-

Die wichtigsten Tokens im Wavefront-Format (.obj)

text Kommentarzeile
v float float float
vn float float float
vt float float
fintintint...
fint/intint/int ...

fint/int/int ...

Definition einer Vertex Position, Indizierung beginnt bei 1
Definition einer Normalen, Indizierung ab 1

Definition einer Texture Koordinate, Indizierung ab 1

Polygon definiert durch Vertex Indizes

Polygon definiert durch Vertices und Texture Koordinaten Indizes

Polygon mit Vertex, Texture und Normalen Index

tung. Negative Werte setzen Sie Null (max), im
Konstantenregister c4 steht dabei die Lichtrich-
tung:

dp3 r0o, vi1, c4
max r0, r0, ci15

An dieser Stelle enthalt das r0-Register in jeder
Komponente die Helligkeit der Oberflache
[0;1]. Es gilt, daraus die vier Gewichte zu be-
stimmen. Dazu wird der Betrag des Abstands
des Helligkeitswertes von den Maxima der Ge-
wichtsfunktionen berechnet.

sub ro, ci11, ro
max r0, ro, -r0

Durch entsprechende Skalierung und Inversi-
on erhalten Sie genau die vier Gewichte in den
Komponenten von r0:

mul rO, ro, ci14
sub r0, c12, ro

Als letzte Aufgabe geben Sie die Daten an die
Pixel Shader weiter. Pixel Shader 1.1 kdnnen
nur sehr eingeschrankt auf Daten zugreifen.
Farbwerte konnen Sie nur in 0D0 und oD]
ibergeben, wobei Sie aber jeweils nur ge-
trennt auf die ersten drei (RGB) oder die letzte
Komponente (Alpha) zugreifen konnen. Des-
halb bleibt nur folgendes:

mov oDO, r0.X

Der Pixel Shader muss nun noch die gewich-
tete Summe der Texturen berechnen. Sie defi-
nieren Konstanten und lesen die Texturen aus:

ps.1.1
def c1, 1.0,
tex t0 ...

1.0, 1.0, 1.0

Anschlieend gewichten Sie den ersten Textur
Wert durch Multiplikation mit dem Gewicht
aus dem Vertex Shader:

mul rO, tO0, vO

Analog gehen Sie mit den drei weiteren Textu-
ren vor, allerdings verwenden Sie den Multiply-

Palast: Dieses 3D-Modell, dargestellt mit unse-
rem Beispielprogramm, gibt es bei 3D-Cafe.

Add-Befehl, um gleich die Summe mit den
Zwischenergebnis zu erhalten:

mad rO, t1, vO0.a, ro0...

Zuletzt miissen Sie nur noch die Inversion der
Texturen umkehren:

sub r0, c1, ro

Datensitze einfach einlesen

Bei der Programmierung von Grafiken bleibt
die Frage, wie und woher lhre Daten fiir die
Modelle kommen. Deshalb enthélt unser Bei-
spielprogramm nun eine Klasse, mit der Sie
Dateien im Wavefront-Format (.obj) lesen
koénnen.

Dabei handelt es sich um ein weit verbreitetes
Format, das viele Modeling-Programme unter-
stiitzen. Es kann sowohl Dreiecksnetze als
auch parametrische Flachen speichern. Die
.obj-Dateien sind Text basiert und daher sehr
einfach einzulesen. Eine gute Quelle fiir Do-
kumentationen fir Dateiformate aller Art
finden Sie unter www.wotsit.org. Die wichtigs-
ten Tokens finden Sie in der letzten Tabelle auf-

gelistet.
Viele freie Modelle finden Sie unter: www.
3dcafe.com cet

PC Magazin 9/2003 : www.pc-magazin.de

