PROGRAMMIERUNG :

PC Magazin 10/2003 : www.pc-magazin.de

Mit Direct3D und den richtigen
Vertex und Pixel Shaders
erzielen Sie Transparenz-
effekte. Mit Multi-Pass
Rendering rechnen Sie bis auf
Pixel-Ebene genau.

Carsten Dachsbacher

Translucency. Beethoven stellen Sie
eindrucksvoll als durchscheinendes
Objekt in Echtzeit dar.

PC UNDERGROUND

Translucency-Effekte mit Direct 3D 9

Von Schein
und Sein

Nach den letzten Ausgaben der PC-Un-

derground-Reihe verfiigen Sie mit den
Grundlagen der Direct3D-Programmierung
nun iber alle Werkzeuge, um eindrucksvolle
Grafiken zu gestalten. Diese Ausgabe stellt Ih-
nen die Techniken vor, die Sie immer wieder
flir Spezialeffekte bendtigen. Damit implemen-
tieren Sie eine Pixel genaue Darstellung von
transparenten 3D-Modellen.
Das Aussehen vieler realer Materialien wie
Marmor, Milch oder menschliche Haut héngt
nicht nur von dem an der Oberflache reflek-
tierten Licht ab. Ein Teil des Lichts dringt an ei-
nem bestimmten Punkt in das Material ein,
wird dort mehrfach gestreut und reflektiert
und kann das Material an einer anderen Stelle

&

Front Face Z

Back Face Z

N

L ¥

Betrachter

Near Plane

Zuriickgelegte Strecke: Mit der Grafikhard-
ware konnen Sie die Dicke des Materials
bestimmen.

wieder verlassen. Diese Prozesse werden un-
ter der Bezeichnung Subsurface Scattering zu-
sammengefasst. Solche Materialeigenschaften
rendern Sie nicht allein mit einem lokalen Be-
leuchtungsmodell, mit dem Programmierer in
der Echtzeit-Computergrafik kdmpfen. An die-
ser Technik wird gegenwadrtig intensiv ge-
forscht.

Wenn Sie lediglich optische Spezialeffekte ge-
stalten wollen, kdnnen Sie durch eine starke
Vereinfachung des Sachverhalts in Echtzeit
durchscheinende (translucent) Objekte dar-
stellen.

Ein einfaches Modell

Dabei gehen Sie zunéchst davon aus, dass ei-
ne unendliche Flachenlichtquelle das Objekt
von hinten beleuchtet. Nehmen Sie nun an,
dass das aus parallelen Strahlen bestehende
eindringende Licht nicht gestreut oder reflek-
tiert, sondern lediglich absorbiert wird. Die
Lichtmenge, die durch das Objekt hindurch-
scheint, lasst sich dann durch eine exponen-
zielle Funktion beschreiben. Deren Parameter
gibt die Strecke vor, die das Licht durch das
Material zuriickgelegt hat. Fiir den Rest der 3D-
Welt nehmen Sie ein Vakuum an, welches die
Lichtstrahlen nicht beeinflusst.

Fiir diese Berechnung — im Detail spater —
missen Sie also fiir jeden Lichtstrahl, der je-

Quelltexte sowie fertig iibersetzte Routinen > CD
Praxis/Programmierung/PC Underground

weils einem Pixel im Bild entspricht, die
Strecke durch das 3D-Objekt bestimmen. Die-
ses konnen Sie analytisch per CPU rechnen
lassen, was allerdings keine Darstellung in
Echtzeit ergibt. Stattdessen zweckentfremden
Sie dafiir lhre Grafikhardware. Das Prinzip
zeigt das Bild (links): Die Strecke, die ein Licht-
strahl durch das Material zurlicklegt, entspricht
der Differenz des Abstands der Vorder- (fi)
bzw. Riickseiten (bi) des Objektes vom Be-
trachter. Wenn der Strahl mehrfach in das Ob-
jekt eindringt und es wieder verldsst, miissen
Sie die Summe der Differenzen berechnen:

(by-fq) + (bp-fp) + ...

Durch eine andere Klammerung dieser Sum-
me erhalten Sie:

Yby -3 f;

Das bedeutet, Sie konnen zuerst die Tiefen-
werte aller Riickseiten (Back Faces) bzw. Vor-
derseiten (Front Faces) summieren und an-
schlieflend die Differenz bilden. Dieser Ansatz
ist schon durchaus tauglich fiir eine Umset-
zung mittels Grafikhardware. Es bleibt ledig-
lich zu klédren, wie Sie die Tiefenwerte aufsum-
mieren. Deren Berechnung kénnen Sie leicht
in einem Vertex Shader erledigen. Das Pro-
blem ist das Aufsummieren selbst: Ein Frame-
buffer hat eine Genauigkeit von 8 Bit pro Farb-
komponente. Bei der Akkumulation mehrerer
Werte und anschliefSender Differenzbildung
bleibt Thnen eine Genauigkeit von wenigen
Bits fiir die Repréasentation der zuriickgelegten
Strecke. Somit ist dieser Ansatz nicht zu ge-
brauchen.

Auch die Framebuffers mit Floating-Point-Ge-
nauigkeit, die von den neuesten Grafikkarten
unterstiitzt werden, kénnen Sie nicht verwen-
den. Der Grund ist, dass Sie Werte aufsummie-
ren wollen, was zunédchst nichts anderes ist als
additives Blending. Leider unterstiitzt bislang
keine Grafikkarte solche Operationen bei
Floating Point Rendertargets. Aber Sie konnen
sich mit einem Trick weiterhelfen, der es Ihnen
gestattet, einen Wert mit hoher Genauigkeit in
einem herkdmmlichen RGBA-32-Bit-Render-
target zu speichern. Dabei wird ein Float-Wert
D (aus dem Intervall /0;1]) auf alle vier Kom-
ponenten R, G, B, A verteilt:

= frac(D * 1.0)
= frac(D * 2.)

frac(D * 22L)
frac(D * 23L)

> W o D
I

Die Funktion frac(..) liefert dabei jeweils den
Nachkomma-Anteil des Arguments zuriick.
Die Konstante L bestimmt, wie sich die Floa-
ting-Point-Zahl auf die vier Komponenten auf-
teilt. Jede dieser vier Komponenten wird fiir

die Verwendung im Framebuffer auf 8 Bit
quantisiert. Eben wegen dieses herkdmmli-
chen Framebuffers konnen Sie mit einer derar-
tigen Représentation alle Blending-Modi der
Grafikkarte nutzen. Wenn Sie fiir L den Wert 8
verwenden, schopfen Sie die Genauigkeit des
Framebuffers voll aus. Wollen Sie allerdings
mehrere solcher kodierten Werte aufsummie-
ren, miissen Sie kleinere Werte wahlen. Sie
kénnen dann genau 2(8-L) Werte aufsummie-
ren. Diese Werte konnen Sie etwa mit einem

MINI-CD

Pixel Shader in nur einem Befehl dekodieren!
Bei der benétigten Operation handelt es sich
um ein einfaches Skalarprodukt, wobei jede
Komponente mit einer Konstanten multipli-
ziert und anschliefend aufsummiert wird:

D=R*1.0+G*2L+B* 22
+ A * 2-3L =
(R,G,B,A)T dot (1.0, 2-L, 2-2L,2-3L)T

Diese Operationen mussen Sie allerdings je-
weils mit Floating-Point-Genauigkeit ausfiih-

Subsurface Scattering

Unterschied: Die
BRDFs (links) konnen
nur lokale Beleuch-

- tungseffekte beschrei-
’ ben. Die BSSRDF
(rechts) erfassen den

Lichttransport durch
das Material.

Mit dem Rendering von Subsurface Scattering, also von allen Lichtreflexionsprozes-
sen innerhalb eines Korpers, in Echtzeit bzw. mit interaktiven Frame Rates beschaf-
tigt sich derzeit auch die Forschung. Ein kurzer Einblick in die Theorie: Ein allgemei-
nes Modell fiir die lokale Beleuchtungsberechnung sind die so genannten Bidirectio-
nal Reflectance Distribution Functions (BRDFs). Diese Funktionen bestimmen fir
einen Oberflachenpunkt, den Teil des auftreffenden Lichtes, der aus einer in eine an-
dere Richtung reflektiert wird. Es handelt sich dabei also um vierdimensionale Funk-
tionen —zwei Dimensionen pro Richtung. Diese Funktionen konnen natiirlich nicht den
Lichttransport durch das Material modellieren. Deshalb gibt es eine weiter verallge-
meinerte Klasse von Funktionen, die Bidirectional Surface Scattering Reflectance Dis-
tribution Function (BSSRDF). Sie beschreiben den Lichttransport zwischen zwei Licht-
strahlen, die auf der Oberflache auftreffen oder abgehen, und sind daher achtdimen-
sional. Aufgrund der Komplexitat sind diese Funktionen nicht fiir Echtzeit-Rendering
zu gebrauchen, kénnen aber durch geeignete Verfahren und bestimmte Materialen
gut approximiert werden.

Das Prinzip dahinter: Die BSSRDF konnen Sie fiir stark lichtstreuende Materialtypen
sehr wirklichkeitsgetreu gestalten, indem nur Mehrfachstreuung angenommen wird.
Strahlen, die nur einmal gestreut wurden und das Material gleich wieder verlassen,
sind dabei selten.

« In einem ersten Abschnitt wird das eintreffende Licht auf der Oberflache berechnet,
etwa an vielen Punkten, die zufallig auf der Oberflache verteilt sind. Die Menge des
Lichtes, das jeweils reflektiert wird bzw. in das Material eindringt, hangt vom so ge-
nannten Fresnel Term ab.

« Im zweiten Abschnitt wird anschlieBend der Lichttransport durch das Material be-
rechnet. Fir jeden Oberflachenpunkt bestimmen Sie die Menge des Lichts, das von al-
len anderen Oberflachenpunkten zu einem Punkt dringt. Dieser Term lasst sich berech-
nen: Er hangt von der Transportrichtung und -strecke des Lichts und der Normalen am
Eintrittspunkt eines Lichtstrahls ab. Doch selbst mit diesem Verfahren benétigen Sie
noch einige Sekunden pro Bild! Doch mit moderner Grafikhardware sind interaktive
Frame Rates zu erreichen, wie die Literatur angibt.

E2 www.dachsbacher.de/pcu

E3 www.ati.com

www.nvidia.com

http://graphics.stanford.edu/papers/bssrdf/
http://www?9.informatik.uni-erlangen.de/Research/Rendering/TSM

187

@
=
£
N
©
=)
@
g
&
<
=
s
=
[2r)
1=
S
I
[N
S
£
N
<
=)
<
=
o
o

188

PC Magazin 10/2003 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

ren, bendtigen aber dafiir keine Grafikkarte der
neuesten Generation. Es geniigt bereits eine
GeForce-3-Karte, um diese Effekte darzustel-
len.

Rendertargets anlegen

Firr diesen Spezialeffekt benétigen Sie mehrere
Renderpasses, deren Resultate erst spater mit
dem endgiiltigen Bild kombiniert werden. Mit
Direct3D ist es einfach, in eine Textur statt in
den Framebulffer zu zeichnen. Sie miissen das
lediglich beim Anlegen der Textur beriicksich-
tigen. Das erledigen Sie wahrend der Initialisie-
rung. Beachten Sie dabei, dass eine Textur, die
als Rendertarget verwendet wird, auch einen
eigenen Z-Buffer besitzt:

LPDIRECT3DTEXTURE9 pDynamicTexture;
LPD3DXRENDERTOSURFACE pRenderSurface;
LPDIRECT3DSURFACE9 pTextureSurface;

// dynamische Textur erzeugen
D3DXCreateTexture (....);

// Off-Screen Surface anlegen
D3DSURFACE_DESC desc;
pDynamicTexture->GetSurfacelLevel(
0, &pTextureSurface);
pTextureSurface->GetDesc(&desc);
D3DXCreateRenderToSurface(....);

Wenn Sie nun diese Textur als Rendertarget
statt des normalen Framebuffers verwenden
wollen, modifizieren Sie die BeginScene/EndsS-
cene-Aufrufe:

pRenderSurface->BeginScene(

1.0
Tiefe

Abbildung: So wird die Tiefe in den RGB-Wer-
ten kodiert.

Verlauf: Mit dieser Textur werden die Farb-
werte den Strecken durch das Material zuge-
wiesen.

pTextureSurface, NULL);
pD3DDevice->Clear(...);
renderScene();
pRenderSurface->EndScene(0);

Den Inhalt der Textur kénnen Sie wie jede an-
dere fiir ein anderes Rendertarget mit

pD3DDevice->SetTexture
(0, pDynamicTexture)

verwenden.

Codierung und Akkumulation

der Tiefenwerte

Im zweiten Schritt miissen Sie die Tiefenwerte
jeweils fiir die Front und Back Faces getrennt
aufsummieren. Zunéchst miissen Sie diese
aber fiir jeden Pixel berechnen. Die Berech-
nung beginnt in einem Vertex Shader. Dieser
transformiert natiirlich die Vertex Koordinaten
entsprechend der konkatenierten Projektion
und World Matrix (gespeichert in den Kon-
stanten c0 bis ¢3). Als Tiefenwert verwenden
Sie die vierte Komponente (homogene Koor-
dinaten) dieses Resultats, die Sie noch abhén-
gig von den Near und Far Planes auf das Inter-
vall [0;1] abbilden:

vs.1.0

; Tiefenwert berechnen
dp4 r0o.w, v0, c3

; Abbilden auf [0;1]
mad r0O, r0.w, c10.xxxz, c10.yyyw

Die Konstante c¢/0 enthélt dabei:

c10.x = 1.0 / (zFar — zNear)
c10.y = -zNear / (zFar — zNear)
c10.z = 0.0

c10.w = 1.0

Die Kodierung des Tiefenwerts muss nun in
der Fragment-Stufe iiber die Bithne gehen.
Wenn Sie sich auf eine Kodierung in drei der
Farbkomponenten beschranken, was immer
noch eine genaue Darstellung ist, konnen Sie
das durch eine 3D-Textur erledigen. Dazu be-
rechnen Sie im Vertex Shader lediglich die Tex-
tur-Koordinaten:

mul oTO, r0, c20

q
Look Up
Texture

Farbberechnung: Tie-
fenwerte fiir Vorder-
und Riickseiten wer-
den aufsummiert, die
Differenz ist die Farbe.

Wobei die Konstante c20 den Vektor (1.0, 2L,
22L, 0.0)T enthdlt. Unser Beispielprogramm
wahlt fiir L den Wert 4, womit Sie mindestens
16 Tiefenwerte fehlerfrei akkumulieren kén-
nen. Die 3D-Textur muss also 16x16x16 Werte
enthalten, wobei Sie den Farbwert eines Texels
(32 Bit ARGB) bestimmen. Der Wertebereich
pro Komponente liegt von 0-255:

// pRampTexture

for (z =0..16)

for (y = 0..16)
for (x = 0..16)
tex3d(x, y, z) =
(x<<18) | (y<<8) | x;

Die Abbildung(links unten) verdeutlicht, wie
sich Tiefenwerte auf den RGB-Tripel darstellen.
Gehen Sie beim Rendering (pro Frame) zu-
nachst wie folgt vor: Im Rendertarget #1 akku-
mulieren Sie die Tiefenwerte der Back Faces.
Dazu schalten Sie den Z-Buffer-Test aus, denn
jede Flache soll gezeichnet werden:

pD3DDevice->SetRenderState(
D3DRS_ZENABLE, false);

pD3DDevice->SetRenderState (
D3DRS_ZWRITEENABLE, false);

Das Akkumulieren erledigen Sie mittels additi-
vem Blending:

pD3DDevice->SetRenderState(
D3DRS_ALPHABLENDENABLE, true);
pD3DDevice->SetRenderState (
D3DRS_SRCBLEND, D3DBLEND_ONE);
pD3DDevice->SetRenderState(
D3DRS_DESTBLEND, D3DBLEND_ONE);
pD3DDevice->SetRenderState(
D3DRS_BLENDOP, D3DBLENDOP_ADD) ;

Anschlielend aktivieren Sie den obigen Vertex
Shader, setzen die Abbildungsmatrizen und
zeichnen die Back Faces der durchscheinen-
den Objekte:

pD3DDevice->SetTexture(...);
pD3DDevice->SetSamplerState(...);
pD3DDevice->SetSamplerState(...);

// Render Back Faces
pD3DDevice->SetRenderState(...);
obj->drawModel(pD3DDevice);

Im zweiten Rendertarget gehen Sie analog vor,
abgesehen davon, dass Sie mit
D3DCULL_CCW die Front Faces zeichnen.

Differenz und Dekodieren

Fir die bisherigen Operationen brauchen Sie
keine Unterscheidung, ob Sie eine neue oder
éltere Grafikkarte programmieren. Die folgen-
den Teilaufgaben lassen sich mit einer Grafik-

karte, die Pixel Shader der Version 2 unter-
stiitzt, einfacher ausfiihren. Deshalb betrach-
ten Sie zunachst diese Variante.

Zundchst lesen und subtrahieren Sie die ko-
dierten Tiefenwerte der beiden Rendertargets.
Nach der Dekodierung per Skalarprodukt wan-
deln Sie die resultierende Tiefendifferenz in ei-
nen Farbwert um. Dazu verwenden Sie eine
Textur mit einem entsprechenden Farbverlauf,
den Sie dann auslesen.

Sie beginnen, ein Rechteck iiber den gesamten
sichtbaren Bereich zu zeichnen. Auf dieses
Rechteck bilden Sie die obigen Rendertargets
als Textur #0 und #1 ab. Auf die dritte Textur-
Stage legen Sie die Textur mit dem Farbverlauf,
die Textur-Stage #2 halten Sie fiir einen zusétz-
lichen Effekt zunéchst frei. Fiir das Zeichnen
dieses Rechtecks verwenden Sie den folgen-
den Pixel Shader (Version 2.0), bei dem die
Deklaration der Textur-Stages entfallt.

Als Erstes lesen Sie die Texturen mit den Tie-
fenwerten aus, subtrahieren diese und berech-
nen das Skalarprodukt zum Dekodieren:

ps.2.0

texld r8, t0, sO
texld r9, tt1, st

sub ro, r8, r9
dp4_sat ro0, r0, c20

Die Konstante c20 enthalt den bereits erwahn-
ten Vektor (1.0, 2-L, 2-2L, 0.0)T, den Sie aber
mit einer beliebigen Konstante multiplizieren
konnen, um eine variable Dichte des Materials
zu modellieren.

Mit der berechneten Tiefendifferenz greifen Sie
auf die Textur mit dem Farbverlauf zu und ver-
wenden das Resultat als endgiiltigen Farbwert:

texld ro, r0o, s3
mov 0oC0, ro

Der oben erwahnte Spezialeffekt ist eine zu-

sétzliche lokale Beleuchtungsberechnung, um
etwa Glanzlichter auf den durchscheinenden
Objekten darzustellen. Sehen Sie, wie zwei Be-
standteile das endgiiltige Bild ergeben.

Diese lokale Beleuchtungsberechnung ren-
dern Sie, bevor Sie das Bild endgiiltig zeich-
nen, in ein weiteres Rendertarget.

Diese Textur konnen Sie analog auslesen und
einfach zu dem Farbwert addieren:

texld r10, t2, s2
add r0, ro, rio
mov oCO, roO

Etwas komplizierter féllt diese Berechnung fiir
altere Grafikkarten aus. Denn dort besteht das
Problem, dass Sie nicht in einem Renderpass
Texturkoordinaten beliebig berechnen (in die-
sem Fall die dekodierte Tiefe) und gleich damit
auf eine Textur zugreifen kénnen. Deshalb
mussen Sie die Auswertung in zwei Render-
passes aufteilen.

Im ersten Pass fiihren Sie lediglich die Subtrak-
tion durch. Dazu legen Sie die beiden Render-
targets mit den akkumulierten Tiefenwerten
auf die ersten beiden Textur-Stages und zeich-
nen wieder ein Rechteck tiber den Bildschirm.
Dabei verwenden Sie den folgenden Pixel Sha-
der, um die Werte zu subtrahieren und an-
schlieend 0.5 auf jede Komponente zu addie-
ren (Konstante ¢3):

ps.1.0...
tex t0 tex ti

add roO, t1, -t0O add ro0, ro, c3

In diesem Renderpass zeichnen Sie noch nicht
in den spaéter sichtbaren Back Buffer, sondern
nochmals in ein extra Rendertarget.

Diese verwenden Sie nun im endgiiltig letzten
Renderpass als Textur auf Stage #0.

Der Pixel Shader fiir das Dekodieren sieht wie
folgt aus:

ps.1.0
tex 10O

Optische Aufbesserung: Die zusétzliche lokale
Beleuchtung fiigen Sie durch Addition der
Farbwerte hinzu.

; Skalarprodukt: t1 dot (2*(t0-0.5))
texm3x2pad t1, t0_bx2

texm3x2tex t2, t0_bx2

tex t3 ; lokale Beleuchtung auslesen
add ro0, t2, t3 ; Finaler Farbwert

Die zwei Textur-Operationen zu Beginn des
Shaders miissen zusammen auftreten, konnen
also nicht einzeln verwendet werden.

Sie berechnen das Skalarprodukt von dem
ausgelesenen Farbwert der Textur #0 (Register
t0) und dem Wert in der Textur Koordinate ¢1.
Der Register Modifier _bx2 bewirkt, dass von
den RGBA-Werten aus der Textur #0 zunéchst
0.5 abgezogen und anschliefSend mit 2.0 mul-
tipliziert wird. Vielleicht fragen Sie sich, was es
nun mit dieser Befehlskonstellation auf sich
hat?

Wenn Sie einen kleinen zusétzlichen Vertex
Shader fiir diesen Renderpass verwenden, der
in die Textur-Koordinate ¢/ jeweils den Vektor
(1.0, 2-L, 2-2L, 0.0)T schreibt, fithren Sie so das
Dekodieren der Tiefe und das Auslesen der
Farbverlauf-Textur (auf Stage #2) aus. Der Rest
des Pixel Shaders liest lediglich wieder die lo-
kale Beleuchtung aus und addiert diese zu
dem vorher bestimmten Farbwert. cet

PC Magazin 10/2003 : www.pc-magazin.de

