
Nach den letzten Ausgaben der PC-Un-

derground-Reihe verfügen Sie mit den

Grundlagen der Direct3D-Programmierung

nun über alle Werkzeuge, um eindrucksvolle

Grafiken zu gestalten. Diese Ausgabe stellt Ih-

nen die Techniken vor, die Sie immer wieder

für Spezialeffekte benötigen. Damit implemen-

tieren Sie eine Pixel genaue Darstellung von

transparenten 3D-Modellen.

Das Aussehen vieler realer Materialien wie

Marmor, Milch oder menschliche Haut hängt

nicht nur von dem an der Oberfläche reflek-

tierten Licht ab. Ein Teil des Lichts dringt an ei-

nem bestimmten Punkt in das Material ein,

wird dort mehrfach gestreut und reflektiert

und kann das Material an einer anderen Stelle

wieder verlassen. Diese Prozesse werden un-

ter der Bezeichnung Subsurface Scattering zu-

sammengefasst. Solche Materialeigenschaften

rendern Sie nicht allein mit einem lokalen Be-

leuchtungsmodell, mit dem Programmierer in

der Echtzeit-Computergrafik kämpfen. An die-

ser Technik wird gegenwärtig intensiv ge-

forscht.

Wenn Sie lediglich optische Spezialeffekte ge-

stalten wollen, können Sie durch eine starke

Vereinfachung des Sachverhalts in Echtzeit

durchscheinende (translucent) Objekte dar-

stellen.

Ein einfaches Modell

Dabei gehen Sie zunächst davon aus, dass ei-

ne unendliche Flächenlichtquelle das Objekt

von hinten beleuchtet. Nehmen Sie nun an,

dass das aus parallelen Strahlen bestehende

eindringende Licht nicht gestreut oder reflek-

tiert, sondern lediglich absorbiert wird. Die

Lichtmenge, die durch das Objekt hindurch-

scheint, lässt sich dann durch eine exponen-

zielle Funktion beschreiben. Deren Parameter

gibt die Strecke vor, die das Licht durch das

Material zurückgelegt hat. Für den Rest der 3D-

Welt nehmen Sie ein Vakuum an, welches die

Lichtstrahlen nicht beeinflusst.

Für diese Berechnung – im Detail später –

müssen Sie also für jeden Lichtstrahl, der je-

PROGRAMMIERUNG : PC UNDERGROUND

186

PC
 M

ag
az

in
 1

0/
20

03
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Mit Direct3D und den richtigen

Vertex und Pixel Shaders

erzielen Sie Transparenz-

effekte. Mit Multi-Pass

Rendering rechnen Sie bis auf

Pixel-Ebene genau.

Carsten Dachsbacher

Translucency-Effekte mit Direct 3D 9

Von Schein
und Seinw

or
ks

ho
p

Translucency: Beethoven stellen Sie
eindrucksvoll als durchscheinendes
Objekt in Echtzeit dar.

Zurückgelegte Strecke: Mit der Grafikhard-
ware können Sie die Dicke des Materials
bestimmen.

weils einem Pixel im Bild entspricht, die

Strecke durch das 3D-Objekt bestimmen. Die-

ses können Sie analytisch per CPU rechnen

lassen, was allerdings keine Darstellung in

Echtzeit ergibt. Stattdessen zweckentfremden

Sie dafür Ihre Grafikhardware. Das Prinzip

zeigt das Bild (links): Die Strecke, die ein Licht-

strahl durch das Material zurücklegt, entspricht

der Differenz des Abstands der Vorder- (fi)

bzw. Rückseiten (bi) des Objektes vom Be-

trachter. Wenn der Strahl mehrfach in das Ob-

jekt eindringt und es wieder verlässt, müssen

Sie die Summe der Differenzen berechnen:

(b1-f1) + (b2-f2) + ...

Durch eine andere Klammerung dieser Sum-

me erhalten Sie:

∑ bi – ∑ fi

Das bedeutet, Sie können zuerst die Tiefen-

werte aller Rückseiten (Back Faces) bzw. Vor-

derseiten (Front Faces) summieren und an-

schließend die Differenz bilden. Dieser Ansatz

ist schon durchaus tauglich für eine Umset-

zung mittels Grafikhardware. Es bleibt ledig-

lich zu klären, wie Sie die Tiefenwerte aufsum-

mieren. Deren Berechnung können Sie leicht

in einem Vertex Shader erledigen. Das Pro-

blem ist das Aufsummieren selbst: Ein Frame-

buffer hat eine Genauigkeit von 8 Bit pro Farb-

komponente. Bei der Akkumulation mehrerer

Werte und anschließender Differenzbildung

bleibt Ihnen eine Genauigkeit von wenigen

Bits für die Repräsentation der zurückgelegten

Strecke. Somit ist dieser Ansatz nicht zu ge-

brauchen.

Auch die Framebuffers mit Floating-Point-Ge-

nauigkeit, die von den neuesten Grafikkarten

unterstützt werden, können Sie nicht verwen-

den. Der Grund ist, dass Sie Werte aufsummie-

ren wollen, was zunächst nichts anderes ist als

additives Blending. Leider unterstützt bislang

keine Grafikkarte solche Operationen bei

Floating Point Rendertargets. Aber Sie können

sich mit einem Trick weiterhelfen, der es Ihnen

gestattet, einen Wert mit hoher Genauigkeit in

einem herkömmlichen RGBA-32-Bit-Render-

target zu speichern. Dabei wird ein Float-Wert

D (aus dem Intervall [0;1]) auf alle vier Kom-

ponenten R, G, B, A verteilt:

R = frac(D * 1.0)
G = frac(D * 2L)
B = frac(D * 22L)
A = frac(D * 23L)

Die Funktion frac(..) liefert dabei jeweils den

Nachkomma-Anteil des Arguments zurück.

Die Konstante L bestimmt, wie sich die Floa-

ting-Point-Zahl auf die vier Komponenten auf-

teilt. Jede dieser vier Komponenten wird für

die Verwendung im Framebuffer auf 8 Bit

quantisiert. Eben wegen dieses herkömmli-

chen Framebuffers können Sie mit einer derar-

tigen Repräsentation alle Blending-Modi der

Grafikkarte nutzen. Wenn Sie für L den Wert 8

verwenden, schöpfen Sie die Genauigkeit des

Framebuffers voll aus. Wollen Sie allerdings

mehrere solcher kodierten Werte aufsummie-

ren, müssen Sie kleinere Werte wählen. Sie

können dann genau 2(8-L) Werte aufsummie-

ren. Diese Werte können Sie etwa mit einem

Pixel Shader in nur einem Befehl dekodieren!

Bei der benötigten Operation handelt es sich

um ein einfaches Skalarprodukt, wobei jede

Komponente mit einer Konstanten multipli-

ziert und anschließend aufsummiert wird:

D = R * 1.0 + G * 2-L + B * 2-2L

+ A * 2-3L =
(R,G,B,A)T dot (1.0, 2-L, 2-2L,2-3L)T

Diese Operationen müssen Sie allerdings je-

weils mit Floating-Point-Genauigkeit ausfüh-

187

PC
 M

ag
az

in
 1

0/
20

03
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Quelltexte sowie fertig übersetzte Routinen > CD
Praxis/Programmierung/PC Underground

Subsurface Scattering

Mit dem Rendering von Subsurface Scattering, also von allen Lichtreflexionsprozes-
sen innerhalb eines Körpers, in Echtzeit bzw. mit interaktiven Frame Rates beschäf-
tigt sich derzeit auch die Forschung. Ein kurzer Einblick in die Theorie: Ein allgemei-
nes Modell für die lokale Beleuchtungsberechnung sind die so genannten Bidirectio-
nal Reflectance Distribution Functions (BRDFs). Diese Funktionen bestimmen für
einen Oberflächenpunkt, den Teil des auftreffenden Lichtes, der aus einer in eine an-
dere Richtung reflektiert wird. Es handelt sich dabei also um vierdimensionale Funk-
tionen – zwei Dimensionen pro Richtung. Diese Funktionen können natürlich nicht den
Lichttransport durch das Material modellieren. Deshalb gibt es eine weiter verallge-
meinerte Klasse von Funktionen, die Bidirectional Surface Scattering Reflectance Dis-
tribution Function (BSSRDF). Sie beschreiben den Lichttransport zwischen zwei Licht-
strahlen, die auf der Oberfläche auftreffen oder abgehen, und sind daher achtdimen-
sional. Aufgrund der Komplexität sind diese Funktionen nicht für Echtzeit-Rendering
zu gebrauchen, können aber durch geeignete Verfahren und bestimmte Materialen
gut approximiert werden.
Das Prinzip dahinter: Die BSSRDF können Sie für stark lichtstreuende Materialtypen
sehr wirklichkeitsgetreu gestalten, indem nur Mehrfachstreuung angenommen wird.
Strahlen, die nur einmal gestreut wurden und das Material gleich wieder verlassen,
sind dabei selten.
● In einem ersten Abschnitt wird das eintreffende Licht auf der Oberfläche berechnet,
etwa an vielen Punkten, die zufällig auf der Oberfläche verteilt sind. Die Menge des
Lichtes, das jeweils reflektiert wird bzw. in das Material eindringt, hängt vom so ge-
nannten Fresnel Term ab.
● Im zweiten Abschnitt wird anschließend der Lichttransport durch das Material be-
rechnet. Für jeden Oberflächenpunkt bestimmen Sie die Menge des Lichts, das von al-
len anderen Oberflächenpunkten zu einem Punkt dringt. Dieser Term lässt sich berech-
nen: Er hängt von der Transportrichtung und -strecke des Lichts und der Normalen am
Eintrittspunkt eines Lichtstrahls ab. Doch selbst mit diesem Verfahren benötigen Sie
noch einige Sekunden pro Bild! Doch mit moderner Grafikhardware sind interaktive
Frame Rates zu erreichen, wie die Literatur angibt.

www.dachsbacher.de/pcu
www.ati.com
www.nvidia.com
http://graphics.stanford.edu/papers/bssrdf/
http://www9.informatik.uni-erlangen.de/Research/Rendering/TSM,

,

,

,

,

Unterschied: Die
BRDFs (links) können
nur lokale Beleuch-
tungseffekte beschrei-
ben. Die BSSRDF
(rechts) erfassen den
Lichttransport durch
das Material.

MINI-CDCD

ren, benötigen aber dafür keine Grafikkarte der

neuesten Generation. Es genügt bereits eine

GeForce-3-Karte, um diese Effekte darzustel-

len.

Rendertargets anlegen

Für diesen Spezialeffekt benötigen Sie mehrere

Renderpasses, deren Resultate erst später mit

dem endgültigen Bild kombiniert werden. Mit

Direct3D ist es einfach, in eine Textur statt in

den Framebuffer zu zeichnen. Sie müssen das

lediglich beim Anlegen der Textur berücksich-

tigen. Das erledigen Sie während der Initialisie-

rung. Beachten Sie dabei, dass eine Textur, die

als Rendertarget verwendet wird, auch einen

eigenen Z-Buffer besitzt:

LPDIRECT3DTEXTURE9 pDynamicTexture;
LPD3DXRENDERTOSURFACE pRenderSurface;
LPDIRECT3DSURFACE9 pTextureSurface;

// dynamische Textur erzeugen
D3DXCreateTexture (....);

// Off-Screen Surface anlegen
D3DSURFACE_DESC desc;
pDynamicTexture->GetSurfaceLevel(
0, &pTextureSurface);

pTextureSurface->GetDesc(&desc);
D3DXCreateRenderToSurface(....);

Wenn Sie nun diese Textur als Rendertarget

statt des normalen Framebuffers verwenden

wollen, modifizieren Sie die BeginScene/EndS-

cene-Aufrufe:

pRenderSurface->BeginScene(

pTextureSurface, NULL);
pD3DDevice->Clear(...);
renderScene();
pRenderSurface->EndScene(0);

Den Inhalt der Textur können Sie wie jede an-

dere für ein anderes Rendertarget mit

pD3DDevice->SetTexture
(0, pDynamicTexture)

verwenden.

Codierung und Akkumulation

der Tiefenwerte

Im zweiten Schritt müssen Sie die Tiefenwerte

jeweils für die Front und Back Faces getrennt

aufsummieren. Zunächst müssen Sie diese

aber für jeden Pixel berechnen. Die Berech-

nung beginnt in einem Vertex Shader. Dieser

transformiert natürlich die Vertex Koordinaten

entsprechend der konkatenierten Projektion

und World Matrix (gespeichert in den Kon-

stanten c0 bis c3). Als Tiefenwert verwenden

Sie die vierte Komponente (homogene Koor-

dinaten) dieses Resultats, die Sie noch abhän-

gig von den Near und Far Planes auf das Inter-

vall [0;1] abbilden:

vs.1.0
...
; Tiefenwert berechnen
dp4 r0.w, v0, c3

; Abbilden auf [0;1]
mad r0, r0.w, c10.xxxz, c10.yyyw

Die Konstante c10 enthält dabei:

c10.x = 1.0 / (zFar – zNear)
c10.y = -zNear / (zFar – zNear)
c10.z = 0.0
c10.w = 1.0

Die Kodierung des Tiefenwerts muss nun in

der Fragment-Stufe über die Bühne gehen.

Wenn Sie sich auf eine Kodierung in drei der

Farbkomponenten beschränken, was immer

noch eine genaue Darstellung ist, können Sie

das durch eine 3D-Textur erledigen. Dazu be-

rechnen Sie im Vertex Shader lediglich die Tex-

tur-Koordinaten:

mul oT0, r0, c20

Wobei die Konstante c20 den Vektor (1.0, 2L,

22L, 0.0)T enthält. Unser Beispielprogramm

wählt für L den Wert 4, womit Sie mindestens

16 Tiefenwerte fehlerfrei akkumulieren kön-

nen. Die 3D-Textur muss also 16x16x16 Werte

enthalten, wobei Sie den Farbwert eines Texels

(32 Bit ARGB) bestimmen. Der Wertebereich

pro Komponente liegt von 0-255:

// pRampTexture
for (z = 0..16)
for (y = 0..16)
for (x = 0..16)
tex3d(x, y, z) =
(x<<16) | (y<<8) | x;

Die Abbildung(links unten) verdeutlicht, wie

sich Tiefenwerte auf den RGB-Tripel darstellen.

Gehen Sie beim Rendering (pro Frame) zu-

nächst wie folgt vor: Im Rendertarget #1 akku-

mulieren Sie die Tiefenwerte der Back Faces.

Dazu schalten Sie den Z-Buffer-Test aus, denn

jede Fläche soll gezeichnet werden:

pD3DDevice->SetRenderState(
D3DRS_ZENABLE, false);

pD3DDevice->SetRenderState(
D3DRS_ZWRITEENABLE, false);

Das Akkumulieren erledigen Sie mittels additi-

vem Blending:

pD3DDevice->SetRenderState(
D3DRS_ALPHABLENDENABLE, true);

pD3DDevice->SetRenderState(
D3DRS_SRCBLEND, D3DBLEND_ONE);

pD3DDevice->SetRenderState(
D3DRS_DESTBLEND, D3DBLEND_ONE);

pD3DDevice->SetRenderState(
D3DRS_BLENDOP, D3DBLENDOP_ADD);

Anschließend aktivieren Sie den obigen Vertex

Shader, setzen die Abbildungsmatrizen und

zeichnen die Back Faces der durchscheinen-

den Objekte:

pD3DDevice->SetTexture(...);
pD3DDevice->SetSamplerState(...);
pD3DDevice->SetSamplerState(...);

// Render Back Faces
pD3DDevice->SetRenderState(...);
obj->drawModel(pD3DDevice);

Im zweiten Rendertarget gehen Sie analog vor,

abgesehen davon, dass Sie mit

D3DCULL_CCW die Front Faces zeichnen.

Differenz und Dekodieren

Für die bisherigen Operationen brauchen Sie

keine Unterscheidung, ob Sie eine neue oder

ältere Grafikkarte programmieren. Die folgen-

den Teilaufgaben lassen sich mit einer Grafik-

PROGRAMMIERUNG : PC UNDERGROUND

188

PC
 M

ag
az

in
 1

0/
20

03
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Abbildung: So wird die Tiefe in den RGB-Wer-
ten kodiert.

Verlauf: Mit dieser Textur werden die Farb-
werte den Strecken durch das Material zuge-
wiesen.

Farbberechnung: Tie-
fenwerte für Vorder-
und Rückseiten wer-
den aufsummiert, die
Differenz ist die Farbe.

karte, die Pixel Shader der Version 2 unter-

stützt, einfacher ausführen. Deshalb betrach-

ten Sie zunächst diese Variante.

Zunächst lesen und subtrahieren Sie die ko-

dierten Tiefenwerte der beiden Rendertargets.

Nach der Dekodierung per Skalarprodukt wan-

deln Sie die resultierende Tiefendifferenz in ei-

nen Farbwert um. Dazu verwenden Sie eine

Textur mit einem entsprechenden Farbverlauf,

den Sie dann auslesen.

Sie beginnen, ein Rechteck über den gesamten

sichtbaren Bereich zu zeichnen. Auf dieses

Rechteck bilden Sie die obigen Rendertargets

als Textur #0 und #1 ab. Auf die dritte Textur-

Stage legen Sie die Textur mit dem Farbverlauf,

die Textur-Stage #2 halten Sie für einen zusätz-

lichen Effekt zunächst frei. Für das Zeichnen

dieses Rechtecks verwenden Sie den folgen-

den Pixel Shader (Version 2.0), bei dem die

Deklaration der Textur-Stages entfällt.

Als Erstes lesen Sie die Texturen mit den Tie-

fenwerten aus, subtrahieren diese und berech-

nen das Skalarprodukt zum Dekodieren:

ps.2.0
...
texld r8, t0, s0
texld r9, t1, s1

sub r0, r8, r9
dp4_sat r0, r0, c20

Die Konstante c20 enthält den bereits erwähn-

ten Vektor (1.0, 2-L, 2-2L, 0.0)T, den Sie aber

mit einer beliebigen Konstante multiplizieren

können, um eine variable Dichte des Materials

zu modellieren.

Mit der berechneten Tiefendifferenz greifen Sie

auf die Textur mit dem Farbverlauf zu und ver-

wenden das Resultat als endgültigen Farbwert:

texld r0, r0, s3
mov oC0, r0

Der oben erwähnte Spezialeffekt ist eine zu-

sätzliche lokale Beleuchtungsberechnung, um

etwa Glanzlichter auf den durchscheinenden

Objekten darzustellen. Sehen Sie, wie zwei Be-

standteile das endgültige Bild ergeben.

Diese lokale Beleuchtungsberechnung ren-

dern Sie, bevor Sie das Bild endgültig zeich-

nen, in ein weiteres Rendertarget.

Diese Textur können Sie analog auslesen und

einfach zu dem Farbwert addieren:

texld r10, t2, s2
add r0, r0, r10
mov oC0, r0

Etwas komplizierter fällt diese Berechnung für

ältere Grafikkarten aus. Denn dort besteht das

Problem, dass Sie nicht in einem Renderpass

Texturkoordinaten beliebig berechnen (in die-

sem Fall die dekodierte Tiefe) und gleich damit

auf eine Textur zugreifen können. Deshalb

müssen Sie die Auswertung in zwei Render-

passes aufteilen.

Im ersten Pass führen Sie lediglich die Subtrak-

tion durch. Dazu legen Sie die beiden Render-

targets mit den akkumulierten Tiefenwerten

auf die ersten beiden Textur-Stages und zeich-

nen wieder ein Rechteck über den Bildschirm.

Dabei verwenden Sie den folgenden Pixel Sha-

der, um die Werte zu subtrahieren und an-

schließend 0.5 auf jede Komponente zu addie-

ren (Konstante c3):

ps.1.0...
tex t0 tex t1
add r0, t1, -t0 add r0, r0, c3

In diesem Renderpass zeichnen Sie noch nicht

in den später sichtbaren Back Buffer, sondern

nochmals in ein extra Rendertarget.

Diese verwenden Sie nun im endgültig letzten

Renderpass als Textur auf Stage #0.

Der Pixel Shader für das Dekodieren sieht wie

folgt aus:

ps.1.0
tex t0

; Skalarprodukt: t1 dot (2*(t0-0.5))
texm3x2pad t1, t0_bx2
texm3x2tex t2, t0_bx2
tex t3 ; lokale Beleuchtung auslesen
add r0, t2, t3 ; Finaler Farbwert

Die zwei Textur-Operationen zu Beginn des

Shaders müssen zusammen auftreten, können

also nicht einzeln verwendet werden.

Sie berechnen das Skalarprodukt von dem

ausgelesenen Farbwert der Textur #0 (Register

t0) und dem Wert in der Textur Koordinate t1.

Der Register Modifier _bx2 bewirkt, dass von

den RGBA-Werten aus der Textur #0 zunächst

0.5 abgezogen und anschließend mit 2.0 mul-

tipliziert wird. Vielleicht fragen Sie sich, was es

nun mit dieser Befehlskonstellation auf sich

hat?

Wenn Sie einen kleinen zusätzlichen Vertex

Shader für diesen Renderpass verwenden, der

in die Textur-Koordinate t1 jeweils den Vektor

(1.0, 2-L, 2-2L, 0.0)T schreibt, führen Sie so das

Dekodieren der Tiefe und das Auslesen der

Farbverlauf-Textur (auf Stage #2) aus. Der Rest

des Pixel Shaders liest lediglich wieder die lo-

kale Beleuchtung aus und addiert diese zu

dem vorher bestimmten Farbwert. : et

189

PC
 M

ag
az

in
 1

0/
20

03
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Optische Aufbesserung: Die zusätzliche lokale
Beleuchtung fügen Sie durch Addition der
Farbwerte hinzu.

