PC Magazin 11/2003 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

Hochsprachen fiir die Program-
mierung von Grafikkarten
haben Hochkonjunktur. In
dieser Ausgabe erfahren Sie,
wie einfach es ist, Microsofts
HLSL in Direct3D zu verwenden.

Carsten Dachsbacher

Zufall: Ein 3D Array von Zufallszahlen
dient als Grundlage fiir Noise-Funk-
tionen.

f

High Level Shader Language Direct3D 9

,Nun lasstuns in
3D sprechen!”

Die Einfiihrung einer programmierbaren

Geometrie- und Fragmentverarbeitung
bei den Grafikkarten, ersteres ab den GeForce
3 oder Radeon 8500 GPUs und fiir letzteres ab
den Radeon 9700 bzw. GeForce FX GPUs, war
ein wichtiger Schritt: Damit geniefen Pro-
grammierer neue Freiheiten, um eine Vielzahl
von Crafikeffekten zu gestalten. Diese Effekte
konnte — wenn {iberhaupt — zuvor nur die CPU
berechnen.
Fir die Programmierung kamen und kommen
noch Assembler artige Sprachen zum Einsatz,
die Sie aus bisherigen PC-Underground-Artikeln
kennen. Fiir viele Einsatzzwecke ist aber eine
Hochsprache wiinschenswert, wie Sie z.B.
schon seit langem von Renderman her bekannt
ist. Die erste Hochsprache dieser Art ist nVidias
Cg (C for graphics), die einen Vertex- oder Frag-
ment-Shader aus C dhnlicher Syntax in Assemb-
ler-Code tibersetzt. Eine solche Hochsprache
wird auch direkt in OpenGL 2.0 integriert sein,
fir Direct3D gibt es das schon: die High Level
Shader Language, kurz HLSL. Diese Ausgabe
fithrt Thnen anhand eines konkreten Beispiels
vor, wie Sie in Direct3D ganz einfach HLSL Sha-
der programmieren und einbinden.

Effect Files

Mit Direct3D kdnnen Sie so genannte Effect Fi-
les (Erweiterung .fx) definieren. Diese definie-

ren textuell eine oder mehrere Render-Techni-
ken. Eine fx-Datei beschreibt vollstandig, wie
das Rendering eines 3D-Objekts ablaufen soll,
d.h. welche Texturen und Texture Mode wie
verwendet werden, welche Vertex und Pixel
Shader zum Einsatz kommen, und ob einer
oder mehrere Renderpasses benotigt werden.
Diese Dateien bieten also einen Weg, in ab-
strakterer Form als mit der Low-Level-Metho-
de zu programmieren. Sie konnen somit Ver-
tex und Pixel Shader nutzen, um Rendering-Ef-
fekte zu kapseln. Die Effekte selbst konnen Sie
dann entweder mit HLSL oder der bereits be-
kannten Assemblersprache programmieren.
Wie diese Effect Files aufgebaut sind, zeigen
wir lhnen anhand eines Beispiels. Darin wer-
den Sie einige Direct3D Renderstates erken-
nen, die Sie bisher iiber explizite Aufrufe ein-
stellen mussten. Als Beispiel soll uns eine an
sich wenig spektakuldre Texturierung dienen.
Die fx-Datei definiert zunéchst eine texture-Va-
riable (texMap), der Sie spater bei der Verwen-
dung von der Applikation aus eine Texture zu-
weisen. AnschliefSend definieren Sie tech0, das
nur einen Renderpass enthdlt. Die meisten der
Renderstate Bezeichner sind selbsterklarend,
da ihr Name etwa dem der SetRenderSta-
te(...)-Konstanten entspricht.

texture texMap;
technique techO

Quelltexte sowie fertig iibersetzte Routinen > CD
Praxis/Programmierung/PC Underground

{ pass PO
{ // keine Shader:
fvf = XYZ | Tex1;...

Diesen Effet, wie in der Datei effect.fx, verwen-
den Sie in Ihrem Programm. Um den Effekt zu
laden, bendtigen Sie ein IDSDXEFFECT-Objekt.
Den Rest tibernimmt D3DX:

LPDIRECT3DTEXTURES pTexture;...

Wie immer sollten Sie priifen, ob dabei ein
Fehler aufgetreten ist. Sollte dies der Fall sein,
so konnen Sie sich eine detaillierte Fehlermel-
dung ausgeben lassen:

if(FAILED(hr))
{ char *pbuf =pBufferErrors-> ...}

Jetzt missen Sie noch eine der potenziell meh-
reren Techniken aus dem Effect File wahlen.
Dazu konnen Sie die erste, auf der verwende-
ten Hardware ausfithrbaren, Techniken su-
chen lassen.

D3DXHANDLE hTechnique;
pEffect->FindNextValidTechnique
(NULL, &hTechnique);

Wenn Sie fiir den ersten Parameter das Hand-
le einer anderen Technik angeben, beginnt die
Suche von dort ausgehend. Zuletzt wahlen Sie
die gefundene Technik aus und setzen die be-
notigte Texture:

pEffect->SetTechnique(hTechnique);
pEffect->SetTexture...

Jetzt konnen Sie die Rendertechnik einsetzen.
Da die Applikation nicht weif3, wie viele Ren-
derpasses benétigt werden, fragen Sie deren
Anzahl ab und fiihren sie dementsprechend
aus. Das Effect File konfiguriert die Rendersta-
tes und arbeitet automatisch.

// Anzahl der Renderpasses
UINT nPasses;
// Beginn 0: Sichern+Wiederherstellen
pEffect->Begin(&nPasses, 0);
for (UINT p = 0; p < nPasses, p ++)
{ pEffect->Pass(p);
/] Zeichnen:
pD3Ddevice->DrawPrimitive...
}
pEffect->End();

High Level Shader Language

Wie bereits erwdhnt, kdnnen Sie innerhalb der
Effect Files Vertex und Pixel Shader definieren.
Diese konnen Sie, wie das folgende Beispiel
zeigt, direkt in der bekannten Assembler Nota-
tion angeben:

pass PO {VertexShader = asm { vs_1_1
dcl_position vO

dcl_normal vi
mov oPos, vO
mov oDO, v1i } ... }

Die zweite Variante, die wir lhnen in dieser
Ausgabe vorstellen wollen, ist die Verwendung
der Hochsprache HLSL mit C-&hnlicher Syntax,
die im Zuge von DirectX 9 entwickelt wurde.
Aufgrund des speziellen Anwendungsgebietes

Unterschied: Links sehen Sie die Lineare und
rechts die vorberechnete kubische Interpolation.

Kubischer Filter: Mit dieser Noise-Funktion
erzeugen Sie Texturen.

\\““//

Summe: Mehrere
Noise-Funktionen
unterschiedlicher
Frequenzen werden
summiert.

PC Magazin 11/2003 : www.pc-magazin.de

PC Magazin 11/2003 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

Lookup Textures in
3D: Holzstrukturen
sind ganz einfach
zu erzeugen.

sind natrlich entsprechende Datentypen und
Objekte definiert, von denen wir Ihnen hier die
wichtigsten vorstellen. Die grundlegenden ska-
laren Datentypen sind bool (wahr oder falsch),
int (32 Bit Integer), und die drei Floating Point
Typen half, float und double mit 16, 32 und 64
Bit Genauigkeit. Dabei missen Sie aber beach-
ten, dass eine GPU nicht unbedingt alle diese
Datentypen unterstiitzt. Es kann z.B. sein — und
damit treten Bereichs- bzw. Genauigkeitspro-
bleme auf — dass der int Typ durch einen float
emuliert wird.

Ebenso ist die Unterstiitzung von half und
double Typen nicht gewahrleistet. Sie konnen
zwar immer jeden Typ verwenden, aber be-
denken Sie die Probleme. Weiterhin sind vec-
tor und matrix Typen definiert, die, wie der
Name schon sagt, verwendet werden kon-
nen, um Vektoren oder Matrizen beliebiger
Typen zu deklarieren. Die gebrauchlichsten
zusammengesetzten Typen sind aber von
vornherein global tiber Typedefs definiert. So
bezeichnet z.B. float3 oder float4 einen drei
bzw. vier Komponentenvektor aus Floats und
float4x4 eine 4x4-Matrix, mit der Sie alle not-
wendigen Transformationen beschreiben
kénnen.

Die nachste wichtige Gruppe stellen die Object
Types dar, zu denen auch die bereits erwahn-
ten Vertex- und Pixel-Shader zdhlen. AufSer-
dem gehoren die so genannten Sampler dazu,
die eine Direct3D Sampler Stage beschreiben,
also welche Texture wie abgetastet und gefil-
tert wird. Das folgende Beispiel ist bereits Be-
standteil unseres Programms, dessen Aufbau
wir schrittweise aufzeigen. Es wird ein Textur-
Objekt mit dem Sampler assoziiert und tri-li-
neares Filterung dafiir gewahlt:

Marmor: Mit Lookup
Textures strukturieren
Sie Marmor verschie-
den, wenn Sie Gain
und Lacunarity variie-
ren.

texture noiseTexture;
sampler noiseSampler =
sampler_state
{ Texture = (noiseTexture);
MipFilter=LINEAR;MinFilter=LINEAR;
MagFilter = LINEAR; };

Zuletzt benétigen Sie noch Strukturen in lhrem
HLSL-Programm, die Sie wie aus C bekannt
mit dem Schliisselwort struct definieren. An
dieser Stelle kommen wir auf unser Beispiel-
programm. Die Eingabedaten pro Vertex, die
Sie beispielsweise mit dem Befehl DrawPrimi-
tive von der Applikation zur Grafikpipeline sen-
den und die Ihr Vertex Shader verarbeiten soll,
definieren Sie als eine Struktur:

struct VERTEX
{ float4 position : POSITION;
float3 normal : NORMAL; };

Dabei legen Sie die Bezeichner der Daten und
den Typ (hier float3 oder float4) fest — die se-
mantische Bindung der Variablen an den Ver-
tex-Datenstrom steht rechts des Doppelpunk-
tes. Der Vertex Shader bearbeitet jeden dieser
Vertices und erzeugt die Daten, die an die Ras-
terisierungsstufe der Grafikkarte weitergege-
ben werden. Die entsprechenden Daten fassen
Sie wiederum in einer Struktur zusammen:

struct FRAGMENT

{ // transformierte Koordinaten
float4 position : POSITION;
/| Texture Koordinaten

float3 texture0 : TEXCOORDO;
float3 texturel : TEXCOORD1;...
// zwei Farbwerte

float4 color : COLORO;
float4 colorSpec : COLOR1; };

Als Vertex Shader deklarieren Sie eine Funkti-
on, die als Parameter eine VERTEX Struktur
entgegen nimmt und eine FRAGMENT Struktur
zurlckliefert:

FRAGMENT myVS(VERTEX vertex)
{ FRAGMENT result;
result.position = ...
return result. };

Genauso verfahren Sie fiir den Pixel Shader,
der eine Struktur ausfiillt, die einen Farbwert
enthélt, aber auch mehrere enthalten kann:

struct FRAGRESULT

{ float4 color : COLOR; };

FRAGRESULT myPS(FRAGMENT frag)
{ FRAGRESULT result;result.color = ...
return result; }

Fir die vollstdndige Liste der semantischen
Bindings mussen wir Sie an dieser Stelle an die
DirectX-Hilfe verweisen. Ebenso verhélt es sich
mit dem riesigen Befehlssatz von HLSL, den
wir Thnen hier in Ausziigen, sofern er im Bei-
spielprogramm Anwendung findet, vorstellen.

Prozedurale Texturierung

Das Beispielprogramm soll 3D-Objekte proze-
dural texturieren. Das bedeutet, es kann —
durch eine geeignete Berechnungsvorschrift —
fir jeden Punkt im Raum einen Farbwert
berechnen. Diese Form der Texturierung hat
natiirlich Vor- und Nachteile. Als wichtigste
Punkte sprechen dafiir, dass Sie ohne explizite
Textur-Koordinaten auskommen (Solid Textu-
ring), beliebig grofle Flachen ohne erkennba-
re Wiederholungen texturieren kénnen und
vor allem eine parametrisierte Texturierung ha-
ben, also durch Anderung weniger Parameter
das Aussehen der Textur gestalten konnen. Die
Nachteile liegen bei der benétigten Rechen-
zeit. Deshalb sollten Sie solche Techniken im
Allgemeinen nur dort einsetzen, wo es sich
auch wirklich lohnt.

Die meisten prozeduralen Texturierungen ba-
sieren dabei auf so genannten Noise-Funktio-
nen. Solche Funktionen liefern reproduzierba-
re Pseudozufallszahlen fiir jeweils gleiche Pa-
rameter, sollten bandbegrenzt sein und keine
offensichtlich wiederholenden Muster aufwei-
sen. In der Praxis wird oft einfach eine Menge
von Zufallszahlen wie ein dreidimensionales
Array an ganzzahligen Koordinaten berechnet.
Durch eine geeignete Filterung fiir die Zwi-
schenwerte erhalten Sie eine gegléattete Varian-
te, die als Noise-Funktion dienen kann.

Nun ist aber eine dieser Noise-Funktionen al-
leine nicht sehr spektakulér. Die Summe von
Noise-Funktionen (oder auch nur einer Funkti-
on) unterschiedlicher Frequenzen gestattet
aber schon sehr interessante Texturen.

Jede der unterschiedlichen Noise-Funktionen
wird dabei als Octave bezeichnet, da oft eine
verdoppelte Frequenz — wie bei Oktaven in
der Musik — zwischen den Noise-Funktionen
verwendet wird. Da man allerdings daran
nicht gebunden ist, wird ein Parameter, der
den Frequenzmultiplikator zweier Oktaven
darstellt, eingefiihrt und mit Lacunarity be-
zeichnet. Die Gewichte, mit denen Sie die Ok-
taven vor der Summenbildung gestalten, neh-
men meist mit zunehmender Frequenz ab.

Der Faktor wird als Gain bezeichnet. Solche
Texturen kénnen Sie nun in Echtzeit berech-
nen und darstellen. Die dazugehdrigen HLSL-
Programme stellen wir Ihnen im Folgenden
vor. Als Noise-Funktion dient Ihnen eine 3D-
Textur.

Diese sollte aber nicht direkt die Zufallszahlen
enthalten, weil die Grafikhardware nur linear
filtern kann, fiir eine gut aussehende geglatte-
te Variante sollten Sie eine kubische Filterung
verwenden. Der Trick ist, beispielsweise
16x16x16 Zufallswerte zu berechnen und dar-
aus eine kubisch geglattete 128x128x128 3D-
Textur zu erzeugen. Beim Auslesen der Textur
wird zwar wiederum linear interpoliert, aber
durch die vorberechnete Glattung werden die
Artefakte kaschiert. Den Unterschied sehen
Sie!

Um Ihnen HLSL besser zu prasentieren, be-
rechnet der Vertex Shader auch eine Phong-
Beleuchtung. Dazu bendtigen Sie zunéchst ei-
ne Reihe von Parametern, die vor dem Rende-
ring von der Applikation mit Werten belegt
werden.

// Matrix: Object ->Clip Space
float4x4 matWvP;

float4 lightPosition; // Object Space
float4 cameraPosition; // Object Space
float scale; // Noise Skalierung
float lacunarity; // Lacunarity

float4 amplify; // 4 Oktaven

Die Definition der benétigten Strukturen und
Sampler haben Sie bereits im vorherigen Ab-
schnitt gesehen, deshalb kdnnen wir uns gleich
dem Vertex Shader widmen. Als erstes transfor-
mieren Sie die Koordinaten der Vertices:

result.position = mul(...

AnschlieBend berechnen Sie die normalisier-
ten Vektoren vom Vertex zum Betrachter und
zur Lichtquelle.

float4 toViewer,

An der Normalen kénnen Sie den Vektor zur
Lichtquelle wie folgt spiegeln:

reflect = normalize(

Die diffuse Beleuchtung berechnen Sie in
NdotL, die spekulare Beleuchtung durch das
Skalar-Produkt (Dot) aus dem Reflexionsvek-
tor und dem Vektor zum Betrachter. Die Vor-
zeichneniiberpriifungen und die Exponentiati-
on {ibernimmt der /it-Befehl:

float NdotL = dot(float4...

Den ambienten und diffusen Beleuchtungsanteil
speichern Sie getrennt vom spekularen. Die bei-
den Teile, die getrennt behandelt werden miis-
sen, kombinieren Sie spater im Pixel Shader.

result.color =litVector....

Fiir das Solid Texturing berechnen Sie jetzt die
Positionen, an denen die Noise-Funktionen
ausgewertet werden sollen, aus der Object Space
Koordinate des Vertex. Die Positionen fiir vier
Oktaven schreiben Sie in die Textur Koordinaten:

float4 noisePosition =....

Der Pixel Shader liest die Noise Textur an den
vier berechneten Positionen aus und muss dar-
aus lediglich noch die Summe bilden. Die Ge-
wichtung der Oktaven (im amplify Parameter)
und die anschlieBende Summe lief3e sich ele-
gant mit einem Skalarprodukt darstellen. Die
Restriktionen der Pixel Shader der Version 1.4
(oder niedriger) verlangen aber die Austeilung
in zwei Operationen, wie Sie im Beispiel se-
hen. Der resultierende Farbwert wird mit dem
ambient-diffusen Beleuchtungsanteil multipli-
ziert und der spekulare Anteil hinzuaddiert:

float4 octaves;
octaves.x = tex3D...

Jetzt miissen Sie nur noch die Vertex und Pixel
Shader in den Effekt einsetzen. Dazu verwen-

Lookup Textures: Diese Texturen verwendet
das Rendering fiir die letzten beiden Bilder.

den Sie die Pass-Beschreibung, wobei Sie die
Ziel Vertex und Pixel Shader Version jeweils
angeben:

VertexShader=compile vs_1_1 vsNoise();

Die Programmparameter setzen Sie von [hrer
Applikation aus, wobei Sie die Methoden des
ID3DXEFFECT Interfaces nutzen:

D3DXVECTOR4 vec;....

Sie erweitern das Programm einfach aber ef-
fektvoll, wenn Sie die berechnete Summe der
Noise-Werte nicht direkt als Farbwert verwen-
den, sondern als Textur-Koordinate fiir eine
Lookup-Textur verwenden. So erhalten Sie
Holz- und Marmor-Effekte.

Occlusion Query

Lohnt der Aufwand? Wenn ein 3D-Objekt sehr
weit vom Betrachter entfernt groitenteils ver-
deckt ist, konnen Sie auf einfachere Shader
ausweichen. Mit dem Occlusion Query Mecha-
nismus stellen Sie fest, wie viele Pixel tatsdch-
lich in den Framebuffer geschrieben wurden.
Beachten Sie, dass der GetData-Befehl asyn-
chron arbeitet — es befinden sich einfach zu
viele Zwischenstufen in der Grafikpipeline, als
dass das Resultat sofort bereitstiinde. Sie soll-
ten ein Programm so konzipieren, dass Sie in
der While-Schleife noch andere Aufgaben er-
ledigen kdnnen, oder vor dem Aufruf GetData
etwas Zeit verstreichen kann. cet

PC Magazin 11/2003 : www.pc-magazin.de

