
Die Einführung einer programmierbaren

Geometrie- und Fragmentverarbeitung

bei den Grafikkarten, ersteres ab den GeForce

3 oder Radeon 8500 GPUs und für letzteres ab

den Radeon 9700 bzw. GeForce FX GPUs, war

ein wichtiger Schritt: Damit genießen Pro-

grammierer neue Freiheiten, um eine Vielzahl

von Grafikeffekten zu gestalten. Diese Effekte

konnte – wenn überhaupt – zuvor nur die CPU

berechnen.

Für die Programmierung kamen und kommen

noch Assembler artige Sprachen zum Einsatz,

die Sie aus bisherigen PC-Underground-Artikeln

kennen. Für viele Einsatzzwecke ist aber eine

Hochsprache wünschenswert, wie Sie z.B.

schon seit langem von Renderman her bekannt

ist. Die erste Hochsprache dieser Art ist nVidias

Cg (C for graphics), die einen Vertex- oder Frag-

ment-Shader aus C ähnlicher Syntax in Assemb-

ler-Code übersetzt. Eine solche Hochsprache

wird auch direkt in OpenGL 2.0 integriert sein,

für Direct3D gibt es das schon: die High Level

Shader Language, kurz HLSL. Diese Ausgabe

führt Ihnen anhand eines konkreten Beispiels

vor, wie Sie in Direct3D ganz einfach HLSL Sha-

der programmieren und einbinden.

Effect Files

Mit Direct3D können Sie so genannte Effect Fi-

les (Erweiterung .fx) definieren. Diese definie-

ren textuell eine oder mehrere Render-Techni-

ken. Eine fx-Datei beschreibt vollständig, wie

das Rendering eines 3D-Objekts ablaufen soll,

d.h. welche Texturen und Texture Mode wie

verwendet werden, welche Vertex und Pixel

Shader zum Einsatz kommen, und ob einer

oder mehrere Renderpasses benötigt werden.

Diese Dateien bieten also einen Weg, in ab-

strakterer Form als mit der Low-Level-Metho-

de zu programmieren. Sie können somit Ver-

tex und Pixel Shader nutzen, um Rendering-Ef-

fekte zu kapseln. Die Effekte selbst können Sie

dann entweder mit HLSL oder der bereits be-

kannten Assemblersprache programmieren.

Wie diese Effect Files aufgebaut sind, zeigen

wir Ihnen anhand eines Beispiels. Darin wer-

den Sie einige Direct3D Renderstates erken-

nen, die Sie bisher über explizite Aufrufe ein-

stellen mussten. Als Beispiel soll uns eine an

sich wenig spektakuläre Texturierung dienen.

Die fx-Datei definiert zunächst eine texture-Va-

riable (texMap), der Sie später bei der Verwen-

dung von der Applikation aus eine Texture zu-

weisen. Anschließend definieren Sie tech0, das

nur einen Renderpass enthält. Die meisten der

Renderstate Bezeichner sind selbsterklärend,

da ihr Name etwa dem der SetRenderSta-

te(...)-Konstanten entspricht.

texture texMap;
technique tech0

PROGRAMMIERUNG : PC UNDERGROUND

198

PC
 M

ag
az

in
 1

1/
20

03
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Hochsprachen für die Program-

mierung von Grafikkarten

haben Hochkonjunktur. In

dieser Ausgabe erfahren Sie,

wie einfach es ist, Microsofts

HLSL in Direct3D zu verwenden.

Carsten Dachsbacher

High Level Shader Language Direct3D 9

„Nun lasst uns in
3D sprechen!“w

or
ks

ho
p

Zufall: Ein 3D Array von Zufallszahlen
dient als Grundlage für Noise-Funk-
tionen.

{ pass P0
{ // keine Shader:
fvf = XYZ | Tex1;...

Diesen Effet, wie in der Datei effect.fx, verwen-

den Sie in Ihrem Programm. Um den Effekt zu

laden, benötigen Sie ein ID3DXEFFECT-Objekt.

Den Rest übernimmt D3DX:

LPDIRECT3DTEXTURE9 pTexture;...

Wie immer sollten Sie prüfen, ob dabei ein

Fehler aufgetreten ist. Sollte dies der Fall sein,

so können Sie sich eine detaillierte Fehlermel-

dung ausgeben lassen:

if(FAILED(hr))
{ char *buf =pBufferErrors-> ...}

Jetzt müssen Sie noch eine der potenziell meh-

reren Techniken aus dem Effect File wählen.

Dazu können Sie die erste, auf der verwende-

ten Hardware ausführbaren, Techniken su-

chen lassen.

D3DXHANDLE hTechnique;
pEffect->FindNextValidTechnique

(NULL, &hTechnique);

Wenn Sie für den ersten Parameter das Hand-

le einer anderen Technik angeben, beginnt die

Suche von dort ausgehend. Zuletzt wählen Sie

die gefundene Technik aus und setzen die be-

nötigte Texture:

pEffect->SetTechnique(hTechnique);
pEffect->SetTexture...

Jetzt können Sie die Rendertechnik einsetzen.

Da die Applikation nicht weiß, wie viele Ren-

derpasses benötigt werden, fragen Sie deren

Anzahl ab und führen sie dementsprechend

aus. Das Effect File konfiguriert die Rendersta-

tes und arbeitet automatisch.

// Anzahl der Renderpasses
UINT nPasses;
// Beginn 0: Sichern+Wiederherstellen
pEffect->Begin(&nPasses, 0);
for (UINT p = 0; p < nPasses, p ++)
{ pEffect->Pass(p);
// Zeichnen:
pD3Ddevice->DrawPrimitive...

}
pEffect->End();

High Level Shader Language

Wie bereits erwähnt, können Sie innerhalb der

Effect Files Vertex und Pixel Shader definieren.

Diese können Sie, wie das folgende Beispiel

zeigt, direkt in der bekannten Assembler Nota-

tion angeben:

pass P0 {VertexShader = asm { vs_1_1
dcl_position v0
dcl_normal v1
mov oPos, v0
mov oD0, v1 } ... }

Die zweite Variante, die wir Ihnen in dieser

Ausgabe vorstellen wollen, ist die Verwendung

der Hochsprache HLSL mit C-ähnlicher Syntax,

die im Zuge von DirectX 9 entwickelt wurde.

Aufgrund des speziellen Anwendungsgebietes

199

PC
 M

ag
az

in
 1

1/
20

03
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Quelltexte sowie fertig übersetzte Routinen > CD
Praxis/Programmierung/PC Underground

Kubischer Filter: Mit dieser Noise-Funktion
erzeugen Sie Texturen.

CDDVD

Summe: Mehrere
Noise-Funktionen
unterschiedlicher
Frequenzen werden
summiert.

Unterschied: Links sehen Sie die Lineare und
rechts die vorberechnete kubische Interpolation.

sind natürlich entsprechende Datentypen und

Objekte definiert, von denen wir Ihnen hier die

wichtigsten vorstellen. Die grundlegenden ska-

laren Datentypen sind bool (wahr oder falsch),

int (32 Bit Integer), und die drei Floating Point

Typen half, float und double mit 16, 32 und 64

Bit Genauigkeit. Dabei müssen Sie aber beach-

ten, dass eine GPU nicht unbedingt alle diese

Datentypen unterstützt. Es kann z.B. sein – und

damit treten Bereichs- bzw. Genauigkeitspro-

bleme auf – dass der int Typ durch einen float

emuliert wird.

Ebenso ist die Unterstützung von half und

double Typen nicht gewährleistet. Sie können

zwar immer jeden Typ verwenden, aber be-

denken Sie die Probleme. Weiterhin sind vec-

tor und matrix Typen definiert, die, wie der

Name schon sagt, verwendet werden kön-

nen, um Vektoren oder Matrizen beliebiger

Typen zu deklarieren. Die gebräuchlichsten

zusammengesetzten Typen sind aber von

vornherein global über Typedefs definiert. So

bezeichnet z.B. float3 oder float4 einen drei

bzw. vier Komponentenvektor aus Floats und

float4x4 eine 4x4-Matrix, mit der Sie alle not-

wendigen Transformationen beschreiben

können.

Die nächste wichtige Gruppe stellen die Object

Types dar, zu denen auch die bereits erwähn-

ten Vertex- und Pixel-Shader zählen. Außer-

dem gehören die so genannten Sampler dazu,

die eine Direct3D Sampler Stage beschreiben,

also welche Texture wie abgetastet und gefil-

tert wird. Das folgende Beispiel ist bereits Be-

standteil unseres Programms, dessen Aufbau

wir schrittweise aufzeigen. Es wird ein Textur-

Objekt mit dem Sampler assoziiert und tri-li-

neares Filterung dafür gewählt:

texture noiseTexture;
sampler noiseSampler =

sampler_state
{ Texture = (noiseTexture);
MipFilter=LINEAR;MinFilter=LINEAR;
MagFilter = LINEAR; };

Zuletzt benötigen Sie noch Strukturen in Ihrem

HLSL-Programm, die Sie wie aus C bekannt

mit dem Schlüsselwort struct definieren. An

dieser Stelle kommen wir auf unser Beispiel-

programm. Die Eingabedaten pro Vertex, die

Sie beispielsweise mit dem Befehl DrawPrimi-

tive von der Applikation zur Grafikpipeline sen-

den und die Ihr Vertex Shader verarbeiten soll,

definieren Sie als eine Struktur:

struct VERTEX
{ float4 position : POSITION;
float3 normal : NORMAL; };

Dabei legen Sie die Bezeichner der Daten und

den Typ (hier float3 oder float4) fest – die se-

mantische Bindung der Variablen an den Ver-

tex-Datenstrom steht rechts des Doppelpunk-

tes. Der Vertex Shader bearbeitet jeden dieser

Vertices und erzeugt die Daten, die an die Ras-

terisierungsstufe der Grafikkarte weitergege-

ben werden. Die entsprechenden Daten fassen

Sie wiederum in einer Struktur zusammen:

struct FRAGMENT
{ // transformierte Koordinaten
float4 position : POSITION;
// Texture Koordinaten
float3 texture0 : TEXCOORD0;
float3 texture1 : TEXCOORD1;...
// zwei Farbwerte
float4 color : COLOR0;
float4 colorSpec : COLOR1; };

Als Vertex Shader deklarieren Sie eine Funkti-

on, die als Parameter eine VERTEX Struktur

entgegen nimmt und eine FRAGMENT Struktur

zurückliefert:

FRAGMENT myVS(VERTEX vertex)
{ FRAGMENT result;
result.position = ...
return result. };

Genauso verfahren Sie für den Pixel Shader,

der eine Struktur ausfüllt, die einen Farbwert

enthält, aber auch mehrere enthalten kann:

struct FRAGRESULT
{ float4 color : COLOR; };

FRAGRESULT myPS(FRAGMENT frag)
{ FRAGRESULT result;result.color = ...
return result; }

Für die vollständige Liste der semantischen

Bindings müssen wir Sie an dieser Stelle an die

DirectX-Hilfe verweisen. Ebenso verhält es sich

mit dem riesigen Befehlssatz von HLSL, den

wir Ihnen hier in Auszügen, sofern er im Bei-

spielprogramm Anwendung findet, vorstellen.

Prozedurale Texturierung

Das Beispielprogramm soll 3D-Objekte proze-

dural texturieren. Das bedeutet, es kann –

durch eine geeignete Berechnungsvorschrift –

für jeden Punkt im Raum einen Farbwert

berechnen. Diese Form der Texturierung hat

natürlich Vor- und Nachteile. Als wichtigste

Punkte sprechen dafür, dass Sie ohne explizite

Textur-Koordinaten auskommen (Solid Textu-

ring), beliebig große Flächen ohne erkennba-

re Wiederholungen texturieren können und

vor allem eine parametrisierte Texturierung ha-

ben, also durch Änderung weniger Parameter

das Aussehen der Textur gestalten können. Die

Nachteile liegen bei der benötigten Rechen-

zeit. Deshalb sollten Sie solche Techniken im

Allgemeinen nur dort einsetzen, wo es sich

auch wirklich lohnt.

Die meisten prozeduralen Texturierungen ba-

sieren dabei auf so genannten Noise-Funktio-

nen. Solche Funktionen liefern reproduzierba-

re Pseudozufallszahlen für jeweils gleiche Pa-

rameter, sollten bandbegrenzt sein und keine

offensichtlich wiederholenden Muster aufwei-

sen. In der Praxis wird oft einfach eine Menge

von Zufallszahlen wie ein dreidimensionales

Array an ganzzahligen Koordinaten berechnet.

Durch eine geeignete Filterung für die Zwi-

schenwerte erhalten Sie eine geglättete Varian-

te, die als Noise-Funktion dienen kann.

Nun ist aber eine dieser Noise-Funktionen al-

leine nicht sehr spektakulär. Die Summe von

Noise-Funktionen (oder auch nur einer Funkti-

on) unterschiedlicher Frequenzen gestattet

aber schon sehr interessante Texturen.

Jede der unterschiedlichen Noise-Funktionen

wird dabei als Octave bezeichnet, da oft eine

verdoppelte Frequenz – wie bei Oktaven in

der Musik – zwischen den Noise-Funktionen

verwendet wird. Da man allerdings daran

nicht gebunden ist, wird ein Parameter, der

den Frequenzmultiplikator zweier Oktaven

darstellt, eingeführt und mit Lacunarity be-

zeichnet. Die Gewichte, mit denen Sie die Ok-

taven vor der Summenbildung gestalten, neh-

men meist mit zunehmender Frequenz ab.

PROGRAMMIERUNG : PC UNDERGROUND

204

PC
 M

ag
az

in
 1

1/
20

03
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Marmor: Mit Lookup
Textures strukturieren
Sie Marmor verschie-
den, wenn Sie Gain
und Lacunarity variie-
ren.

Lookup Textures in
3D: Holzstrukturen
sind ganz einfach
zu erzeugen.

Der Faktor wird als Gain bezeichnet. Solche

Texturen können Sie nun in Echtzeit berech-

nen und darstellen. Die dazugehörigen HLSL-

Programme stellen wir Ihnen im Folgenden

vor. Als Noise-Funktion dient Ihnen eine 3D-

Textur.

Diese sollte aber nicht direkt die Zufallszahlen

enthalten, weil die Grafikhardware nur linear

filtern kann, für eine gut aussehende geglätte-

te Variante sollten Sie eine kubische Filterung

verwenden. Der Trick ist, beispielsweise

16x16x16 Zufallswerte zu berechnen und dar-

aus eine kubisch geglättete 128x128x128 3D-

Textur zu erzeugen. Beim Auslesen der Textur

wird zwar wiederum linear interpoliert, aber

durch die vorberechnete Glättung werden die

Artefakte kaschiert. Den Unterschied sehen

Sie!

Um Ihnen HLSL besser zu präsentieren, be-

rechnet der Vertex Shader auch eine Phong-

Beleuchtung. Dazu benötigen Sie zunächst ei-

ne Reihe von Parametern, die vor dem Rende-

ring von der Applikation mit Werten belegt

werden.

// Matrix: Object ->Clip Space
float4x4 matWVP;
float4 lightPosition; // Object Space
float4 cameraPosition; // Object Space
float scale; // Noise Skalierung
float lacunarity; // Lacunarity
float4 amplify; // 4 Oktaven

Die Definition der benötigten Strukturen und

Sampler haben Sie bereits im vorherigen Ab-

schnitt gesehen, deshalb können wir uns gleich

dem Vertex Shader widmen. Als erstes transfor-

mieren Sie die Koordinaten der Vertices:

result.position = mul(...

Anschließend berechnen Sie die normalisier-

ten Vektoren vom Vertex zum Betrachter und

zur Lichtquelle.

float4 toViewer, ...

An der Normalen können Sie den Vektor zur

Lichtquelle wie folgt spiegeln:

reflect = normalize(...

Die diffuse Beleuchtung berechnen Sie in

NdotL, die spekulare Beleuchtung durch das

Skalar-Produkt (Dot) aus dem Reflexionsvek-

tor und dem Vektor zum Betrachter. Die Vor-

zeichnenüberprüfungen und die Exponentiati-

on übernimmt der lit-Befehl:

float NdotL = dot(float4...

Den ambienten und diffusen Beleuchtungsanteil

speichern Sie getrennt vom spekularen. Die bei-

den Teile, die getrennt behandelt werden müs-

sen, kombinieren Sie später im Pixel Shader.

result.color =litVector....

Für das Solid Texturing berechnen Sie jetzt die

Positionen, an denen die Noise-Funktionen

ausgewertet werden sollen, aus der Object Space

Koordinate des Vertex. Die Positionen für vier

Oktaven schreiben Sie in die Textur Koordinaten:

float4 noisePosition =....

Der Pixel Shader liest die Noise Textur an den

vier berechneten Positionen aus und muss dar-

aus lediglich noch die Summe bilden. Die Ge-

wichtung der Oktaven (im amplify Parameter)

und die anschließende Summe ließe sich ele-

gant mit einem Skalarprodukt darstellen. Die

Restriktionen der Pixel Shader der Version 1.4

(oder niedriger) verlangen aber die Austeilung

in zwei Operationen, wie Sie im Beispiel se-

hen. Der resultierende Farbwert wird mit dem

ambient-diffusen Beleuchtungsanteil multipli-

ziert und der spekulare Anteil hinzuaddiert:

float4 octaves;
octaves.x = tex3D...

Jetzt müssen Sie nur noch die Vertex und Pixel

Shader in den Effekt einsetzen. Dazu verwen-

den Sie die Pass-Beschreibung, wobei Sie die

Ziel Vertex und Pixel Shader Version jeweils

angeben:

VertexShader=compile vs_1_1 vsNoise();

Die Programmparameter setzen Sie von Ihrer

Applikation aus, wobei Sie die Methoden des

ID3DXEFFECT Interfaces nutzen:

D3DXVECTOR4 vec;....

Sie erweitern das Programm einfach aber ef-

fektvoll, wenn Sie die berechnete Summe der

Noise-Werte nicht direkt als Farbwert verwen-

den, sondern als Textur-Koordinate für eine

Lookup-Textur verwenden. So erhalten Sie

Holz- und Marmor-Effekte.

Occlusion Query

Lohnt der Aufwand? Wenn ein 3D-Objekt sehr

weit vom Betrachter entfernt größtenteils ver-

deckt ist, können Sie auf einfachere Shader

ausweichen. Mit dem Occlusion Query Mecha-

nismus stellen Sie fest, wie viele Pixel tatsäch-

lich in den Framebuffer geschrieben wurden.

Beachten Sie, dass der GetData-Befehl asyn-

chron arbeitet – es befinden sich einfach zu

viele Zwischenstufen in der Grafikpipeline, als

dass das Resultat sofort bereitstünde. Sie soll-

ten ein Programm so konzipieren, dass Sie in

der While-Schleife noch andere Aufgaben er-

ledigen können, oder vor dem Aufruf GetData

etwas Zeit verstreichen kann. : et

205

PC
 M

ag
az

in
 1

1/
20

03
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Lookup Textures: Diese Texturen verwendet
das Rendering für die letzten beiden Bilder.

