
Das Normal-Mapping ist eine Technik,

mit der Sie die Low-Polygon-3D-Modelle

so beleuchten können, dass sie wie deutlich

höher aufgelöste Dreiecksnetze aussehen. Da-

bei speichert eine Textur für jeden Oberflä-

chenpunkt der Low-Polygon-Variante die Nor-

male als Farbwert codiert, die dem detaillierten

Dreiecksnetz an dieser Stelle entspricht.

Das Ziel ist also das gleiche, das Sie vom übli-

chen Bump Mapping kennen: Das Rendering

durch eine modifizierte Normale für die Be-

leuchtungsberechnung soll detaillierter beein-

drucken, als die Geometrie des Dreiecksnetzes

tatsächlich vorgibt. Solche Normal-Maps kön-

nen Sie automatisch berechnen lassen, wenn

Sie eine niedrig und eine hoch aufgelöste Va-

riante eines Dreiecksnetzes vorliegen haben.

Das Programm Normal Mapper, das Sie dazu

benötigen, können Sie von der ATI Developer

Homepage downloaden: www.ati.com/develo
per/NormalMapper_3_1.zip.

Es gibt auch noch weitere Programme dieser

Art, wie Polybump von Crytek (www.crytek.
de) oder Open Render Bump von Soclab

(www.soclab.bth.se/practices/orb.html). Diese

Ausgabe verwendet das ATI-Tool.

Das Prinzip

Wie bereits erwähnt, berechnen diese Tools

für jeden Oberflächenpunkt des niedrig aufge-

lösten Dreiecksnetzes die Normale, die das

besser aufgelöste Netz an der entsprechenden

Stelle der Oberfläche hat. Um diese Informati-

on zu speichern, benötigen Sie als erstes eine

Parametrisierung (auch UV Mapping genannt)

für eine Normal Map (also eine Textur). Die

Textur-Koordinaten der Dreiecke für die Nor-

PROGRAMMIERUNG : PC UNDERGROUND

202

PC
 M

ag
az

in
 1

2/
20

03
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Mit Normal Mapping lassen

Sie Low-Polygon-3D-Modelle

detailliert erscheinen. Die

fehlenden Informationen zur

High-Polygon-Variante

speichern Sie in Texturen.

Carsten Dachsbacher

Effizientes Rendering mit Normal Maps

Komplexe
Objektew

or
ks

ho
p

Stanford Bunny aus 4800 Dreiecken:
Links mit Gouraud Shading, rechts mit
Normal Maps.

UV Mapping: Die Drei-
ecke überlappen sich
nicht in Textur Space.

mal Map müssen so gewählt sein, dass sich

keine Dreiecke – in der Textur – überschnei-

den. Solche Textur-Koordinaten zuzuweisen,

ist von Hand viel zu aufwändig und für kom-

plexe Objekte schlichtweg unmöglich, deshalb

bieten Modelling Tools, wie Maya oder 3D-Stu-

dio Max, die entsprechende Funktionalität –

entweder direkt als Bestandteil der Software

oder per Plug-in. Sollten Sie keines dieser Tools

zur Verfügung haben, empfehlen wir Ihnen als

Startpunkt für eine eigene Implementation die

Webpage www.realistic3d.com/ von K. Hurley,

der Source Code für ein solches 3D-Studio Max

Plug-in zum Download anbietet. Eine weitere

sehr gute Quelle ist die Homepage von C.

Bloom (www.cbloom.com/).

Das Bild zeigt eine geeignete UV-Parametrisie-

rung. Damit entspricht nun jeder Punkt der

Textur keinem oder genau einem Punkt auf

der Objektoberfläche.

Das Normal Mapper Tool geht wie folgt vor: Es

zeichnet die Dreiecke des Low-Polygon-Mo-

dells entsprechend ihrer Textur-Koordinaten in

die Normal Map. Für jeden Texel wird der da-

zugehörige Punkt auf der Oberfläche und die

interpolierte Normale (jeweils der Low-Poly-

gon Modells) bestimmt. Anschließend berech-

nen Sie mit dem High-Polygon-Modell die

Schnittpunkte des Strahls, gegeben durch den

Oberflächenpunkt und die Normale. Anhand

des Schnittpunkts lässt sich die dazugehörige

Normale bestimmen, die dann in der Normal

Map gespeichert wird.

Bei mehreren Schnittpunkten gibt es verschie-

dene Heuristiken, welcher der Schnittpunkte

als Kriterium herangezogen wird. Die Drei-

ecksnetze übergeben Sie dem ATI Normal

Mapper jeweils im nmf-Format, das Sie wie-

derum mit Plug-ins aus Maya und 3D-Studio

Max exportieren können, oder auch mit dem

Dreams3D Model Editor (www.sibvrv.km.ru/
products/svd3d.htm). Weitere Informationen

zum nmf-Format finden Sie im Kasten.

Object versus Tangent Space

Beim Bump Mapping unterscheiden Sie prin-

zipiell zwischen zwei verschiedenen Ansätzen.

Der erste, den Sie bereits aus früheren PC-Un-

derground-Artikeln kennen, ist das so genann-

te Tangent Space Bump Mapping.

Dabei definieren Sie für jeden Vertex ein Koor-

dinatensystem (den Tangent Space), den Nor-

male, Binormale und Tangente bilden. Eine

entsprechende Bump Map speichert die Nor-

malen relativ zu diesem Koordinatensystem,

d.h. eine Normale, die entlang der Normale

des Tangent Space zeigt, ist in der Bump Map

als Vektor (0, 0, 1)T definiert. Diese Technik ist

relativ Textur sparend und erlaubt beliebige

Textur Mappings. Allerdings müssen Sie dafür

im Vertex Shader einige Vorberechnungen

durchführen.

Den anderen Ansatz gestalten Sie mit dem UV-

Mapping. Da Sie jedem Punkt der Oberfläche

genau einen Teil der Textur zuweisen, können

Sie direkt die Normale im Object Space (also

relativ zu den Koordinaten der Vertices) spei-

chern. Dadurch vermeiden Sie etwas Aufwand

bei den Vertex Shadern, da Sie nur einmalig in-

nerhalb der Applikation die Lichtquelle in den

Object Space transformieren müssen, und au-

ßerdem einige Artefakte, die bei Tangent Spa-

ce Bump Mapping in Zusammenhang mit be-

stimmten UV-Mappings auftreten können.

Im Bild sehen Sie den – in der Computergrafik

– berühmten Stanford Bunny, der auf etwa

4 800 Dreiecke und die entsprechende Normal

Map reduziert ist. Die Normal Map wurde mit-

hilfe des voll aufgelösten Dreiecksnetzes mit

knapp 70 000 Dreiecken gebildet. Die Norma-

len sehen Sie rechts im Bild als Farbe codiert,

wobei sich kaum noch Unterschiede zum ori-

ginal Datensatz ausmachen lassen. Das Bild

auf Seite XXX zeigt ein weiteres bekanntes Mo-

dell: Der Drache wurde ebenfalls auf 3 500

Dreiecke reduziert, doch das Rendering mit

den Normal Maps lässt kaum Wünsche offen.

Normal Maps erzeugen

Nach dem wir Ihnen nun das Prinzip verdeut-

licht und hoffentlich schmackhaft gemacht ha-

ben, zeigen wir Ihnen jetzt, wie Sie es Schritt

für Schritt selbst durchführen. Der Normal

Mapper ist ein Kommandozeilen-Tool, dem Sie

die Dateinamen der Low- und High-Polygon-

Variante des 3D-Objektes übergeben:

normalmapper w lowpoly.nmf
highpoly.nmf 512 512 normalmap.tga

Den Parameter w geben Sie an, um Object

Space Normal Maps zu generieren, die restli-

203

PC
 M

ag
az

in
 1

2/
20

03
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Quelltexte sowie fertig übersetzte Routinen > CD
Praxis/Programmierung/PC Underground

nmf-Format

Das nmf-Dateiformat ist Chunk-basierend,
das heisst, es besteht aus verschiedenen
Typen von Datenblöcken, die teilweise in-
einander geschachtelt sein können. Jeder
Datenblock wird durch einen Bezeichner
identifiziert und kann bei Bedarf über-
sprungen werden. Der Vorteil eines sol-
chen Aufbaus ist, dass die Datei schnell
nach interessanten Blöcken durchsucht
werden kann und unbekannte Blöcke igno-
riert werden können.
Die nmf-Daten finden Sie in einer Datei, in-
dem Sie nach dem nmf- Header suchen.
Jeder Chunkheader ist acht Byte groß, und
besteht aus einem vier Byte Identifier und
einem DWORD, das die Größe des Chunks
angibt:

typedef struct
{
char hdr[4];
DWORD size;

} NmHeader;

Der Header Chunk enthält die Kennung
NMF. Wenn Sie diesen Chunk gefunden
haben, suchen Sie darin wiederum einen
Chunk mit der Kennung TRIS. Haben Sie
diesen gefunden, können Sie die Daten
der Dreiecke lesen.
Der TRIS-Chunk beginnt mit einem
DWORD, das die Anzahl der Dreiecke in
diesem Chunk angibt. Jedes dieser Drei-
ecke besteht aus einer NmRawTriangle-
Struktur.
typedef struct
{

NmRawPoint vert[3];
NmRawPoint norm[3];
NmRawTexCoord texCoord[3];

} NmRawTriangle;

typedef struct
{
float x, y, z;

} NmRawPoint;

typedef struct
{
float u, v;

} NmRawTexCoord;

So ist das nmf- Dateiformat leicht zu lesen
und zu schreiben, da es sich lediglich um
zwei Chunk-Header und die Liste aller Drei-
ecke mit deren Vertices und Vertexattribu-
ten handelt.

Das Prinzip: Sie bestimmen die Normale
anhand der detaillierten Geometrie.

MINI-CDCD

chen Parameter bezeichnen die Größe und

den Dateinamen der Textur. Typischerweise

gestalten Sie in einem Modellingprogramm zu-

nächst die detaillierte Version des 3D-Modells.

Die niedriger aufgelöste Variante erhalten Sie

entweder durch automatische Dreiecksnetz

Reduzierer (enthalten im Modelling Paket oder

bei http://lodbook.com/) oder durch Handar-

beit. Bei Computerspielen investieren die Pro-

grammierer meist viel Handarbeit, da dies bes-

sere Ergebnisse erzielt.

Um Ihnen weitere Konvertierarbeit zu erspa-

ren, finden Sie auf der CD zu dieser Ausgabe

ein Konverter-Tool von dem nmf in das obj-Da-

teiformat, das unser Direct3D-Beispielpro-

gramm verwendet. Dieser Konverter setzt auf

den Normal Mapper Source Code, den Sie

auch bei ATI downloaden können, auf. Auch

können Sie damit gleich Tangent Spaces be-

rechnen und speichern.

Rendern mit Object Space Normal
Maps

Mit unserem Direct3D Framework können Sie

die so konvertierten obj-Dateien laden. Es wur-

de der Vollständigkeit halber modifiziert, weil

das ursprüngliche OBJ-Format keine Tangent

Spaces vorsieht. Statt dem Token vn für Nor-

male wurde das vx Token gefolgt von drei Vek-

toren (Normale, Binormale, Tangente) einge-

führt.

Bei der hier vorgestellten Object-Space-Bump

Mapping-Technik benötigen Sie pro Vertex

aber nur die Textur-Koordinaten. Die Vertex

und Pixel Shader definieren Sie zum Beispiel

wieder in einer Direct3D-Effect-Datei, die wir

Ihnen an dieser Stelle für Pixel Shader 2.0 Kar-

ten zeigen.

Der benötigte Vertex Shader ist denkbar ein-

fach. Sie transformieren einfach die Vertices

entsprechend der World-View-Projection-Ma-

trix, reichen die Textur-Koordinaten für die

Normal Map durch und übergeben die World

Space Koordinate (in diesem Fall entspricht

das auch der Object Space Koordinate) in der

zweiten Textur Koordinate an die Rasterisie-

rungsstufe:

struct FRAGMENT
{float4 position : POSITION;
...//siehe Heft-CD};

FRAGMENT vsBump(VERTEX vertex)
{ FRAGMENT result;....return result;}

Während der Rasterisierung berechnen Sie

dann das Modell per Pixel, nachdem Sie die

dazu benötigte Normale aus der Normal Map

ausgelesen und auf das entsprechende Inter-

vall skaliert haben:

FRAGRESULT psBump(FRAGMENT fragment)
{ FRAGRESULT result; //siehe Heft-CD
.... return result;
}

Rendern mit Tangent Space Normal
Maps

Auch wenn Sie Tangent Space Normal Maps

verwenden, bringt das Vorteile: Durch die Auf-

lösung der generierten Normal Map ist auch

der Detailgrad der Oberfläche eines Objektes

begrenzt und die Auflösung der Textur lässt

sich natürlich nicht beliebig steigern. Wie

beim herkömmlichen Texturieren können Sie

Detail Maps einsetzen, d.h. Texturen oder in

diesem Fall Bump Maps, die nur sichtbar sind,

wenn sich der Betrachter nahe am Objekt be-

findet, die zudem feine Strukturen aufweisen.

Aber genau für diese Detail Maps, die mehr-

fach aneinandergelegt auf die Oberfläche ge-

mapped sind, benötigen Sie Tangent Space

Bump Mapping, da Sie sonst die Textur-Koor-

dinaten nicht frei wählen können.

Glücklicherweise können Sie mit dem Nor-

mal Mapper Tools auch diese Art der Normal

Maps erzeugen und mit dem Konverter gleich

die entsprechenden Tangent Spaces im obj-

Format speichern. Somit ändern Sie nur noch

das Effect File. Zunächst benötigen Sie mehr

Attribute pro Vertex, eben den Tangent

Space:

struct VERTEX
{
float4 position : POSITION;
float3 normal : NORMAL;
float3 tangent : TEXCOORD0;
float3 binormal : TEXCOORD1;
float4 texcoord : TEXCOORD2;

};

Im Vertex Shader berechnen Sie dann den

Vektor von jedem Vertex zur Lichtquelle und

transformieren ihn mit drei Skalarprodukten in

den Tangent Space:

struct FRAGMENT
{
float4 position: POSITION;
float3 texture0: TEXCOORD0;
float3 osPos : TEXCOORD1;
float3 tsLight : TEXCOORD2;
};

FRAGMENT vsBump(VERTEX vertex)
{
FRAGMENT result;
result.position =
mul(matWVP, vertex.position);

float4 lightDir = normalize(
lightPosition - vertex.position);

result.tsLight.x =
dot(lightDir, vertex.tangent);

result.tsLight.y =
dot(lightDir, vertex.binormal);

result.tsLight.z =
dot(lightDir, vertex.normal);

result.tsLight.w = 1.0;

result.tsLight =
normalize(result.tsLight);

result.osPos = vertex.position;
result.texture0 = vertex.texcoord;

return result;
}

Im Pixel Shader lesen Sie wie bisher die Nor-

male aus, die dann bereits im Tangent Space

vorliegt. Da die Komponenten des Vektors zur

Lichtquelle während der Rasterisierung linear

interpoliert werden, müssen Sie diesen für je-

den Pixel normalisieren:

FRAGRESULT psBump(FRAGMENT fragment)
{ FRAGRESULT result;

float4 normal, lightDir;
// normale auslesen

PROGRAMMIERUNG : PC UNDERGROUND

204

PC
 M

ag
az

in
 1

2/
20

03
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Tangent Space: Jeder Vertex ist mit einem
Koordinatensystem assoziiert.

Bunny und Normal Map: So erhalten Sie die Normalen für die Beleuchtungsberechnung, um das Bild
ausdrucksvoller gestalten zu können.

normal = tex2D(normalSampler,
.. // beispiel: diffuse beleuchtung
result.color= dot(lightDir, normal);
return result; }

Ausblick

Ein UV-Mapping, wie Sie es für die Normal

Maps benötigen, erlaubt es, nahezu beliebig

kontinuierliche Werte für Punkte auf der Ob-

jektoberfläche zu speichern. Dadurch ergeben

sich weitere Einsatzgebiete. Mit dem ATI Nor-

mal Mapper können Sie zusätzlich zu den Nor-

malen eine so genannte Bent Normal berech-

nen. Um die Bent Normal zu bestimmen, ver-

folgen Sie zunächst einen Strahl von der

Oberfläche der Low-Polygon-Objektes und be-

rechnen den Schnittpunkt mit dem hoch auf-

gelösten Dreiecksnetz. Anschließend tasten Sie

von diesem Schnittpunkt aus die Halbkugel

über der Oberfläche durch eine größere An-

zahl von Strahlen ab. Strahlen, die keine Flä-

chen des Objektes schneiden, werden gemit-

telt und das Resultat ist die Bent Normal. Die-

ser Vektor zeigt in die Richtung, aus der am

meisten Licht auf die Objektoberfläche einfällt.

Sie verwenden dies, um diffuses Environment

Mapping zu simulieren.

Ähnliches berechnet der Normal Mapper auch

beim Occlusion Term Modus. Wiederum tas-

ten Sie die Hemisphäre über dem Schnittpunkt

mit dem High-Polygon-Modell ab, wozu übri-

gens 261 oder 581 Strahlen verschossen wer-

den, und Sie speichern den Prozentsatz der

Strahlen ohne weitere Schnittpunkte. Dieser

Term dient dann dazu, die ambiente Beleuch-

tung abzudunkeln, um eine Art Selbstbeschat-

tung zu simulieren.

Eine ganz andere Art der Anwendung solcher

UV-Mappings vermag, Subsurface Scattering

Effekte darzustellen. Da grundlegende Idee ist

dabei folgende: Sie zeichnen das 3D-Objekt in

eine Textur. Allerdings verwenden Sie die Tex-

tur-Koordinaten als 2D-Koordinaten für das

Rendering und transformieren nicht etwa die

Modell-Koordinaten. Bei diesem Rendering

Pass berechnen Sie neben der Beleuchtung,

wie viel Licht an der entsprechenden Stelle des

Objekts in das Material eindringt. Anschlie-

ßend setzen Sie eine vorberechnete Tabelle

ein, um für jeden Vertex des Dreiecksnetzes zu

bestimmen, wie viel Licht von den anderen

Oberflächenteilen bis zu ihm durch das Mate-

rial dringt. Hier reicht eine Rechnung pro Ver-

tex, da die Intensitätsverläufe meist niederfre-

quent sind. Auch dieser Schritt lässt sich mit

Multipass Rendering und Dependent Textur

Lookups in Hardware durchführen. Im ab-

schließenden Render Pass verwenden Sie die

Vertex-Intensitäten, die auch in einer Textur ge-

speichert wurden. Genaueres zu diesem Ver-

fahren finden Sie in dem Paper: GPU Algo-

rithms for Radiosity and Subsurface Scattering

(http://graphics.cs.uiuc.edu/~nacarr/papers/gp
uradsub.pdf). : et

205

PC
 M

ag
az

in
 1

2/
20

03
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Links zum Thema

Beschreibung Link-Adresse

3D Studio Max Plugin für UV Mapping www.mankua.com/quickuvw.cfm

Dream3D Model Editor www.sibvrv.km.ru/products/svd3d.htm

Open Render Bump www.soclab.bth.se/practices/orb.html

Source Code für 3DSMax Plugin www.realistic3d.com/source_code.htm

Tools, z.B. Normal Mapper www.ati.com

Informationen über Bump Mapping www.nvidia.com

Source Code für UV Mapping u.v.m. www.cbloom.com/3d/galaxy3/

Literatur www.dachsbacher.de/pcu

Stanford Dragon: Die
Qualität der Darstel-
lung beeindruckt mit
nur 3500 Dreiecken.

