PC Magazin 12/2003 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

Mit Normal Mapping lassen
Sie Low-Polygon-3D-Modelle
detailliert erscheinen. Die
fehlenden Informationen zur
High-Polygon-Variante
speichern Sie in Texturen.

Carsten Dachsbacher

Stanford Bunny aus 4800 Dreiecken:
Links mit Gouraud Shading, rechts mit
Normal Maps.

Effizientes Rendering mit Normal Maps

Komplexe
Objekte

Das Normal-Mapping ist eine Technik,

mit der Sie die Low-Polygon-3D-Modelle
so beleuchten kénnen, dass sie wie deutlich
hoher aufgeldste Dreiecksnetze aussehen. Da-
bei speichert eine Textur fiir jeden Oberfla-
chenpunkt der Low-Polygon-Variante die Nor-
male als Farbwert codiert, die dem detaillierten
Dreiecksnetz an dieser Stelle entspricht.
Das Ziel ist also das gleiche, das Sie vom iibli-
chen Bump Mapping kennen: Das Rendering
durch eine modifizierte Normale fiir die Be-
leuchtungsberechnung soll detaillierter beein-
drucken, als die Geometrie des Dreiecksnetzes
tatsachlich vorgibt. Solche Normal-Maps kon-
nen Sie automatisch berechnen lassen, wenn
Sie eine niedrig und eine hoch aufgeldste Va-
riante eines Dreiecksnetzes vorliegen haben.
Das Programm Normal Mapper, das Sie dazu
bendétigen, konnen Sie von der ATI Developer

Homepage downloaden: www.ati.com/develo
per/NormalMapper_3_1.zip.

Es gibt auch noch weitere Programme dieser
Art, wie Polybump von Crytek (www.crytek.
de) oder Open Render Bump von Soclab
(www.soclab.bth.se/practices/orb.html). Diese
Ausgabe verwendet das ATI-Tool.

Das Prinzip

Wie bereits erwahnt, berechnen diese Tools
fir jeden Oberflachenpunkt des niedrig aufge-
l6sten Dreiecksnetzes die Normale, die das
besser aufgeldste Netz an der entsprechenden
Stelle der Oberflache hat. Um diese Informati-
on zu speichern, bendtigen Sie als erstes eine
Parametrisierung (auch UV Mapping genannt)
fur eine Normal Map (also eine Textur). Die
Textur-Koordinaten der Dreiecke fiir die Nor-

UV Mapping: Die Drei-
ecke iiberlappen sich
nicht in Textur Space.

Quelltexte sowie fertig iibersetzte Routinen > CD
Praxis/Programmierung/PC Underground

mal Map miissen so gewahlt sein, dass sich
keine Dreiecke — in der Textur — {iberschnei-
den. Solche Textur-Koordinaten zuzuweisen,
ist von Hand viel zu aufwéndig und fiir kom-
plexe Objekte schlichtweg unmoglich, deshalb
bieten Modelling Tools, wie Maya oder 3D-Stu-
dio Max, die entsprechende Funktionalitat —
entweder direkt als Bestandteil der Software
oder per Plug-in. Sollten Sie keines dieser Tools
zur Verfiigung haben, empfehlen wir Ihnen als
Startpunkt fiir eine eigene Implementation die
Webpage www.realistic3d.com/von K. Hurley,
der Source Code fiir ein solches 3D-Studio Max
Plug-in zum Download anbietet. Eine weitere
sehr gute Quelle ist die Homepage von C.
Bloom (www.chloom.com/).

Das Bild zeigt eine geeignete UV-Parametrisie-
rung. Damit entspricht nun jeder Punkt der
Textur keinem oder genau einem Punkt auf
der Objektoberflache.

Das Normal Mapper Tool geht wie folgt vor: Es
zeichnet die Dreiecke des Low-Polygon-Mo-
dells entsprechend ihrer Textur-Koordinaten in
die Normal Map. Fiir jeden Texel wird der da-
zugehorige Punkt auf der Oberflache und die
interpolierte Normale (jeweils der Low-Poly-
gon Modells) bestimmt. AnschlieSend berech-
nen Sie mit dem High-Polygon-Modell die
Schnittpunkte des Strahls, gegeben durch den
Oberflachenpunkt und die Normale. Anhand
des Schnittpunkts lasst sich die dazugehorige
Normale bestimmen, die dann in der Normal
Map gespeichert wird.

Bei mehreren Schnittpunkten gibt es verschie-
dene Heuristiken, welcher der Schnittpunkte
als Kriterium herangezogen wird. Die Drei-
ecksnetze (ibergeben Sie dem ATI Normal
Mapper jeweils im nmf-Format, das Sie wie-

nmf-Format

derum mit Plug-ins aus Maya und 3D-Studio
Max exportieren kdénnen, oder auch mit dem
Dreams3D Model Editor (www.sibvrv.km.ru/
products/svd3d.htm). Weitere Informationen
zum nmf-Format finden Sie im Kasten.

Object versus Tangent Space

Beim Bump Mapping unterscheiden Sie prin-
zipiell zwischen zwei verschiedenen Ansatzen.
Der erste, den Sie bereits aus fritheren PC-Un-
derground-Artikeln kennen, ist das so genann-
te Tangent Space Bump Mapping.

Dabei definieren Sie fiir jeden Vertex ein Koor-
dinatensystem (den Tangent Space), den Nor-
male, Binormale und Tangente bilden. Eine
entsprechende Bump Map speichert die Nor-
malen relativ zu diesem Koordinatensystem,
d.h. eine Normale, die entlang der Normale
des Tangent Space zeigt, ist in der Bump Map
als Vektor (0, 0, 1)T definiert. Diese Technik ist
relativ Textur sparend und erlaubt beliebige
Textur Mappings. Allerdings miissen Sie dafiir
im Vertex Shader einige Vorberechnungen
durchfiihren.

Den anderen Ansatz gestalten Sie mit dem UV-
Mapping. Da Sie jedem Punkt der Oberflache
genau einen Teil der Textur zuweisen, konnen
Sie direkt die Normale im Object Space (also
relativ zu den Koordinaten der Vertices) spei-
chern. Dadurch vermeiden Sie etwas Aufwand
bei den Vertex Shadern, da Sie nur einmalig in-
nerhalb der Applikation die Lichtquelle in den
Object Space transformieren miissen, und au-
Berdem einige Artefakte, die bei Tangent Spa-
ce Bump Mapping in Zusammenhang mit be-
stimmten UV-Mappings auftreten koénnen.
Im Bild sehen Sie den — in der Computergrafik

Ccbh MINI-CD

— beriihmten Stanford Bunny, der auf etwa
4800 Dreiecke und die entsprechende Normal
Map reduziert ist. Die Normal Map wurde mit-
hilfe des voll aufgeldsten Dreiecksnetzes mit
knapp 70000 Dreiecken gebildet. Die Norma-
len sehen Sie rechts im Bild als Farbe codiert,
wobei sich kaum noch Unterschiede zum ori-
ginal Datensatz ausmachen lassen. Das Bild
auf Seite XXX zeigt ein weiteres bekanntes Mo-
dell: Der Drache wurde ebenfalls auf 3500
Dreiecke reduziert, doch das Rendering mit
den Normal Maps ldsst kaum Wiinsche offen.

Normal Maps erzeugen

Nach dem wir Ihnen nun das Prinzip verdeut-
licht und hoffentlich schmackhaft gemacht ha-
ben, zeigen wir Ihnen jetzt, wie Sie es Schritt
fir Schritt selbst durchfiihren. Der Normal
Mapper ist ein Kommandozeilen-Tool, dem Sie
die Dateinamen der Low- und High-Polygon-
Variante des 3D-Objektes tibergeben:

normalmapper w lowpoly.nmf
highpoly.nmf 512 512 normalmap.tga

Den Parameter w geben Sie an, um Object
Space Normal Maps zu generieren, die restli-

High-Poly

interpplierte

Low-Poly

Das Prinzip: Sie bestimmen die Normale
anhand der detaillierten Geometrie.

Das nmf-Dateiformat ist Chunk-basierend,
das heisst, es besteht aus verschiedenen
Typen von Datenbldcken, die teilweise in-
einander geschachtelt sein kdnnen. Jeder
Datenblock wird durch einen Bezeichner
identifiziert und kann bei Bedarf lber-
sprungen werden. Der Vorteil eines sol-
chen Aufbaus ist, dass die Datei schnell
nach interessanten Blécken durchsucht
werden kann und unbekannte Blécke igno-
riert werden kdnnen.

Die nmf-Daten finden Sie in einer Datei, in-
dem Sie nach dem nmf- Header suchen.
Jeder Chunkheader ist acht Byte gro3, und
besteht aus einem vier Byte Identifier und
einem DWORD, das die Gro3e des Chunks
angibt:

typedef struct

{
char hdr[4];
DWORD size;
} NmHeader;

Der Header Chunk enthalt die Kennung
NMF. Wenn Sie diesen Chunk gefunden
haben, suchen Sie darin wiederum einen
Chunk mit der Kennung TRIS. Haben Sie
diesen gefunden, kdnnen Sie die Daten
der Dreiecke lesen.

Der TRIS-Chunk beginnt mit einem
DWORD, das die Anzahl der Dreiecke in
diesem Chunk angibt. Jedes dieser Drei-
ecke besteht aus einer NmRawTriangle-

Struktur.
typedef struct
{

NmRawPoint vert[3];

NmRawPoint norm[3];

NmRawTexCoord texCoord[3];
} NmRawTriangle;

typedef struct

{
float x, y, z;
} NmRawPoint;

typedef struct
{

float u, v;
} NmRawTexCoord;
So ist das nmf- Dateiformat leicht zu lesen
und zu schreiben, da es sich lediglich um
zwei Chunk-Header und die Liste aller Drei-
ecke mit deren Vertices und Vertexattribu-
ten handelt.

203

@
=
£
N
©
=)
@
g
&
<
=
s
=
[2r)
1=
S
I
NS
S
£
N
<
=)
<
=
o
o

PROGRAMMIERUNG :

PC UNDERGROUND

PC Magazin 12/2003 : www.pc-magazin.de

chen Parameter bezeichnen die Groéf3e und
den Dateinamen der Textur. Typischerweise
gestalten Sie in einem Modellingprogramm zu-
nachst die detaillierte Version des 3D-Modells.
Die niedriger aufgel6ste Variante erhalten Sie
entweder durch automatische Dreiecksnetz
Reduzierer (enthalten im Modelling Paket oder
bei http://lodbook.com/) oder durch Handar-
beit. Bei Computerspielen investieren die Pro-
grammierer meist viel Handarbeit, da dies bes-
sere Ergebnisse erzielt.

Um Thnen weitere Konvertierarbeit zu erspa-
ren, finden Sie auf der CD zu dieser Ausgabe
ein Konverter-Tool von dem nmf in das obj-Da-
teiformat, das unser Direct3D-Beispielpro-
gramm verwendet. Dieser Konverter setzt auf
den Normal Mapper Source Code, den Sie
auch bei ATI downloaden kénnen, auf. Auch
kénnen Sie damit gleich Tangent Spaces be-
rechnen und speichern.

Rendern mit Object Space Normal
Maps

Mit unserem Direct3D Framework kénnen Sie
die so konvertierten obj-Dateien laden. Es wur-
de der Vollstéandigkeit halber modifiziert, weil
das urspriingliche OBJ-Format keine Tangent
Spaces vorsieht. Statt dem Token vn fiir Nor-
male wurde das vx Token gefolgt von drei Vek-
toren (Normale, Binormale, Tangente) einge-
fihrt.

Bei der hier vorgestellten Object-Space-Bump
Mapping-Technik bendétigen Sie pro Vertex
aber nur die Textur-Koordinaten. Die Vertex

Tangent Space: Jeder Vertex ist mit einem
Koordinatensystem assoziiert.

und Pixel Shader definieren Sie zum Beispiel
wieder in einer Direct3D-Effect-Datei, die wir
[hnen an dieser Stelle fiir Pixel Shader 2.0 Kar-
ten zeigen.

Der bendtigte Vertex Shader ist denkbar ein-
fach. Sie transformieren einfach die Vertices
entsprechend der World-View-Projection-Ma-
trix, reichen die Textur-Koordinaten fiir die
Normal Map durch und iibergeben die World
Space Koordinate (in diesem Fall entspricht
das auch der Object Space Koordinate) in der
zweiten Textur Koordinate an die Rasterisie-
rungsstufe:

struct FRAGMENT
{float4 position : POSITION;
...//siehe Heft-CD};

FRAGMENT vsBump(VERTEX vertex)
{ FRAGMENT result;....return result;}

Wéhrend der Rasterisierung berechnen Sie
dann das Modell per Pixel, nachdem Sie die
dazu bendtigte Normale aus der Normal Map
ausgelesen und auf das entsprechende Inter-
vall skaliert haben:

FRAGRESULT psBump(FRAGMENT fragment)
{ FRAGRESULT result; //siehe Heft-CD
return result;

}

Rendern mit Tangent Space Normal
Maps

Auch wenn Sie Tangent Space Normal Maps
verwenden, bringt das Vorteile: Durch die Auf-
16sung der generierten Normal Map ist auch
der Detailgrad der Oberfléache eines Objektes
begrenzt und die Auflosung der Textur lasst
sich nattirlich nicht beliebig steigern. Wie
beim herkdmmlichen Texturieren kénnen Sie
Detail Maps einsetzen, d.h. Texturen oder in
diesem Fall Bump Maps, die nur sichtbar sind,
wenn sich der Betrachter nahe am Objekt be-
findet, die zudem feine Strukturen aufweisen.
Aber genau fiir diese Detail Maps, die mehr-
fach aneinandergelegt auf die Oberflache ge-
mapped sind, bendtigen Sie Tangent Space

Bunny und Normal Map: So erhalten Sie die Normalen fiir die Beleuchtungsbherechnung, um das Bild
ausdrucksvoller gestalten zu konnen.

Bump Mapping, da Sie sonst die Textur-Koor-
dinaten nicht frei wahlen kénnen.
Glicklicherweise kénnen Sie mit dem Nor-
mal Mapper Tools auch diese Art der Normal
Maps erzeugen und mit dem Konverter gleich
die entsprechenden Tangent Spaces im 0bj-
Format speichern. Somit &ndern Sie nur noch
das Effect File. Zunédchst bendtigen Sie mehr
Attribute pro Vertex, eben den Tangent
Space:

struct VERTEX

{
float4 position : POSITION;
float3 normal : NORMAL;
float3 tangent : TEXCOORDO;
float3 binormal : TEXCOORD1;
float4 texcoord : TEXCOORD2;
s

Im Vertex Shader berechnen Sie dann den
Vektor von jedem Vertex zur Lichtquelle und
transformieren ihn mit drei Skalarprodukten in
den Tangent Space:

struct FRAGMENT

{

float4 position: POSITION;
float3 texture0: TEXCOORDO;
float3 osPos : TEXCOORD1;
float3 tsLight : TEXCOORD2;
s

FRAGMENT vsBump(VERTEX vertex)
{
FRAGMENT result;
result.position =
mul(matWVP, vertex.position);
float4 lightDir = normalize(
lightPosition - vertex.position);

result.tsLight.x =

dot(lightDir, vertex.tangent);
result.tsLight.y =

dot(lightDir, vertex.binormal);
result.tsLight.z =

dot(lightDir, vertex.normal);
result.tsLight.w = 1.0;

result.tsLight =

normalize(result.tsLight);
result.osPos = vertex.position;
result.texture0 = vertex.texcoord;

return result;

}

Im Pixel Shader lesen Sie wie bisher die Nor-
male aus, die dann bereits im Tangent Space
vorliegt. Da die Komponenten des Vektors zur
Lichtquelle wéhrend der Rasterisierung linear
interpoliert werden, miissen Sie diesen fiir je-
den Pixel normalisieren:

FRAGRESULT psBump(FRAGMENT fragment)
{ FRAGRESULT result;

float4 normal, lightDir;
// normale auslesen

normal = tex2D(normalSampler,
. // beispiel: diffuse beleuchtung
result.color= dot(lightDir, normal);
return result; }

Ausblick

Ein UV-Mapping, wie Sie es fiir die Normal
Maps benétigen, erlaubt es, nahezu beliebig
kontinuierliche Werte fiir Punkte auf der Ob-
jektoberflache zu speichern. Dadurch ergeben
sich weitere Einsatzgebiete. Mit dem ATI Nor-
mal Mapper konnen Sie zusatzlich zu den Nor-
malen eine so genannte Bent Normal berech-
nen. Um die Bent Normal zu bestimmen, ver-
folgen Sie zunédchst einen Strahl von der
Oberflache der Low-Polygon-Objektes und be-
rechnen den Schnittpunkt mit dem hoch auf-
gelosten Dreiecksnetz. Anschlieflend tasten Sie
von diesem Schnittpunkt aus die Halbkugel
Uiber der Oberflache durch eine gréflere An-
zahl von Strahlen ab. Strahlen, die keine Fla-
chen des Objektes schneiden, werden gemit-
telt und das Resultat ist die Bent Normal. Die-
ser Vektor zeigt in die Richtung, aus der am
meisten Licht auf die Objektoberflache einfallt.
Sie verwenden dies, um diffuses Environment
Mapping zu simulieren.

Ahnliches berechnet der Normal Mapper auch
beim Occlusion Term Modus. Wiederum tas-

ten Sie die Hemisphére iber dem Schnittpunkt
mit dem High-Polygon-Modell ab, wozu iibri-
gens 261 oder 581 Strahlen verschossen wer-

Links zum Thema

den, und Sie speichern den Prozentsatz der
Strahlen ohne weitere Schnittpunkte. Dieser
Term dient dann dazu, die ambiente Beleuch-
tung abzudunkeln, um eine Art Selbstbeschat-
tung zu simulieren.

Eine ganz andere Art der Anwendung solcher
UV-Mappings vermag, Subsurface Scattering
Effekte darzustellen. Da grundlegende Idee ist
dabei folgende: Sie zeichnen das 3D-Objekt in
eine Textur. Allerdings verwenden Sie die Tex-
tur-Koordinaten als 2D-Koordinaten fiir das
Rendering und transformieren nicht etwa die
Modell-Koordinaten. Bei diesem Rendering
Pass berechnen Sie neben der Beleuchtung,
wie viel Licht an der entsprechenden Stelle des
Objekts in das Material eindringt. Anschlie-
Bend setzen Sie eine vorberechnete Tabelle
ein, um fiir jeden Vertex des Dreiecksnetzes zu
bestimmen, wie viel Licht von den anderen
Oberflachenteilen bis zu ihm durch das Mate-
rial dringt. Hier reicht eine Rechnung pro Ver-
tex, da die Intensitatsverlaufe meist niederfre-
quent sind. Auch dieser Schritt lasst sich mit
Multipass Rendering und Dependent Textur
Lookups in Hardware durchfiihren. Im ab-
schliefenden Render Pass verwenden Sie die
Vertex-Intensitaten, die auch in einer Textur ge-
speichert wurden. Genaueres zu diesem Ver-
fahren finden Sie in dem Paper: GPU Algo-
rithms for Radiosity and Subsurface Scattering
(http://graphics.cs.uiuc.edu/~nacarr/papers/gp
uradsub.pdf). et

Stanford Dragon: Die
Qualitét der Darstel-
lung beeindruckt mit
nur 3500 Dreiecken.

3D Studio Max Plugin fiir UV Mapping ~ www.mankua.com/quickuvw.cfm

Dream3D Model Editor www.sibvrv.km.ru/products/svd3d.htm
Open Render Bump www.soclab.bth.se/practices/orb.html
Source Code fiir 3DSMax Plugin www.realistic3d.com/source_code.htm
Tools, z.B. Normal Mapper www.ati.com

Informationen {iber Bump Mapping www.nvidia.com

Source Code fiir UV Mapping u.v.m. www.cbloom.com/3d/galaxy3/
Literatur www.dachsbacher.de/pcu

PC Magazin 12/2003 : www.pc-magazin.de

