
In dieser Ausgabe zeigen wir Ihnen, wie

Sie Ihr Windows-System mit einem

Desktop-Hintergrund animieren. Es gibt prin-

zipiell zwei Wege, dies zu erreichen. Der erste

nutzt die so genannten Windows Hooks, um

sich in das System einzuhängen. So fangen Sie

die Nachrichten ab, die das Zeichnen des

Desktops anstoßen. Der Desktop ist per Defini-

tion auch ein Windows-Fenster.

Der andere Weg verwendet Overlays. Dabei

handelt es sich um 2D-Bitmaps, die die Grafik-

karte beliebig auf dem Bildschirm platzieren

kann. Sie können sie so verwenden, dass Sie

nur bestimmte Farben auf dem Bildschirm wie

die Farbe Ihres Desktop-Hintergrunds ersetzen.

Auf den Overlays können Sie dann beliebige

Grafikeffekte darstellen.

Direct Draw und Video Overlays

Im ersten Schritt initialisieren Sie DirectDraw

wie andere DirectX-Komponenten: Sie erzeu-

gen eine Instanz des DirectDraw Objektes.

LPDIRECTDRAW7 pDirectDraw;
DirectDrawCreateEx(NULL,

Mit SetCooperativeLevel(...) bestimmen Sie

das Top-Level-Verhalten Ihres Programms. Die

Konstante DDSCL_NORMAL bedeutet, dass es

sich um eine herkömmliche Anwendung mit

einem Fenster handelt. Andere Werte deuten

z.B. auf Vollbild- oder Exclusive-Level-Anwen-

dungen hin. Achten Sie bei DirectX-Funk-

tionen immer auf die Rückgabewerte und

prüfen Sie eventuell auftretende Fehler. Um

mit DirectDraw etwas darzustellen, benötigen

Sie immer eine so genannte Primary Surface.

Surfaces sind Speicherbereiche, in denen

Bitmaps verschiedenste Formate und optional

mit Hintergrund- oder Tiefenpuffern repräsen-

tieren.

Die Primary Surface ist diejenige, die die für

den Benutzer sichtbare Bitmap enthält. Sie be-

schreiben die Eigenschaften der Surface mit

der ddsd-Struktur:

DDSURFACEDESC2 ddsd;

Das dwFlags-Feld gibt an, welche Strukturein-

träge Sie ausfüllen. Mit dem dwCaps-Feld le-

gen Sie fest, dass es sich um eine Primary Sur-

face handelt, die Sie so erzeugen:
pDirectDraw->CreateSurface(
&ddsd, &pDDSurfacePrimary, NULL);

Overlay Surfaces

Als nächstes benötigen Sie noch eine Surface

für das Overlay. Bevor Sie diese anlegen, über-

prüfen Sie, ob die Grafikhardware Overlays un-

terstützt. Dazu lassen Sie sich die Device Caps

PROGRAMMIERUNG : PC UNDERGROUND

176

PC
 M

ag
az

in
 3

/2
00

4
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Individualisieren Sie Ihr

Windows System mit einem

selbst programmierten,

animiertem Desktop-

Hintergrund. Hier erfahren

Sie, wie Sie Video Overlays

verwenden und Ihre

Programme über den System

Tray erreichen.

Carsten Dachsbacher

Windows verschönern mit DirectDraw Overlays

Fenster in
allen Farbenw

or
ks

ho
p

von Direct Draw geben. In dieser Struktur sind

alle Fähigkeiten der Hardware beschrieben:

DDCAPS ddCaps;
INIT_DDSTRUCT(ddCaps);
pDirectDraw->GetCaps(&ddCaps,NULL):

Overlays werden unterstützt, wenn das folgen-

de Flag gesetzt ist: ddCaps.dwCaps &

DDCAPS_OVERLAY. Wenn das der Fall ist, le-

gen Sie die Overlay Surface an. Beginnen Sie

wieder damit, die gewünschten Eigenschaften

der Surface zu beschreiben:

DDSURFACEDESC2 ddsdOv;
INIT_DDSTRUCT(ddsdOv);

Die Bedeutung der einzelnen Flags beschreibt

detailliert die MSDN Hilfe (http://msdn.micro
soft.com). Zusammengefasst: Sie beschreiben

eine Overlay Surface per Hintergrundpuffer,

der im Video-Speicher liegt, mit einer exem-

plarischen Größe von 320x240 Pixel. Jetzt

müssen Sie noch für das Pixelformat ent-

scheiden, ob die Surface die Farbwerte im

RGB- oder YUV-Format enthält und mit wel-

cher Genauigkeit sie gespeichert werden. Die

meisten Grafikkarten unterstützen 32-Bit-

RGBA-Overlays, die Sie auch im Folgenden

anlegen. Das Beispielprogramm beherrscht

weitere Pixelformate, um alle Grafikkarten

bedienen zu können:

DDPIXELFORMAT overlayFormat =
{ sizeof(DDPIXELFORMAT),
DDPF_RGB, 0, 32, 0x00FF0000,

0x0000FF00, 0x000000FF, 0 };

Darstellung der Overlays

Als letztes programmieren Sie den aufwen-

digsten Teil, indem Sie die Overlay Surface

darstellen. Dabei geben Sie an, welchen Aus-

schnitt des Overlays Sie wo auf dem Bild-

schirm darstellen wollen. Dabei müssen Sie

eventuelle Beschränkungen wie Größe und

Position des Overlays berücksichtigen. Zu-

dem wird manchmal eine leichte Skalierung

bzw. Streckung des Overlays gefordert. Alle

Anforderungen sind in den Device Caps des

Direct Draw Objektes enthalten, die Sie erfül-

len müssen.

Zunächst positionieren Sie die Overlays, die

zwei RECT-Strukturen definieren. Dann vergrö-

ßern Sie das Overlay auf den ganzen Bild-

schirm:

RECT rs = { 0, 1, 320, 240 };

Wenn Sie das Overlay in Originalgröße darstel-

len wollen, müssen Sie die minimale Skalie-

rung einhalten, wozu Sie diese Einträge ver-

wenden:

DWORD scale = max(1000,
ddCaps.dwMinOverlayStretch);

Die Größen für das Overlay beschränken Sie,

indem Sie den darzustellenden Ausschnitt zu-

schneiden:
DWORD s = ddCaps.dwAlignSizeSrc;
if (ddCaps.dwCaps&DDCAPS_ALIGNSIZESRC

&& s)
rs.right -= rs.right % s;

Das Ziel-Rechteck vergrößern Sie so, dass es

ein Vielfaches des vorgegebenen Alignments

wird:

DWORD s = ddCaps.dwAlignSizeDest;

if(ddCaps.dwCaps&DDCAPS_ALIGNSIZEDEST
&& s)

rd.right=((rd.right+s-1)/s)*s;

Damit stellen Sie das Overlay dar, wie es nach

folgendem Funktionsaufruf das Listing der

Heft-CD fortführt:

DDOVERLAYFX ovfx; DWORD dwUpdateFlags;

Das Overlay bedeckt Ihren gesamten Bild-

schirm, so dass Sie nichts anderes mehr se-

hen. Da Sie aber nur Teile wie den Desktophin-

tergrund einfärben wollten, verwenden Sie das

so genannte Color Keying.

Das Verfahren ersetzt nur eine bestimmte Far-

be oder einen bestimmten Farbbereich per

Overlay auf dem Bildschirm. So färben Sie

Desktop- und Fensterhintergründe oder Schrift

mit Farbwerten ein.

Die DDColorMatch-Funktion passt den angege-

benen Farbwert (hier (0,0,0): schwarz) an das

Pixelformat der Primary Surface an. Jetzt teilen

Sie der Primary Surface den Color Key Wert

mit und aktivieren die Funktionalität, indem Sie

die dwUpdateFlags vor dem Aufruf der Up-

dateOverlay-Methode modifizieren:

DDCOLORKEY colorKey;
colorKey.dwColorSpaceLowValue =
colorKey.dwColorSpaceHighValue =

DDColorMatch(pDDSurfacePrimary,
RGB(0, 0, 0));

pDDSurfacePrimary->SetColorKey(
DDCKEY_DESTOVERLAY, &colorKey);

if (ddCaps.dwCKeyCaps &
DDCKEYCAPS_DESTOVERLAY)
dwUpdateFlags |= DDOVER_KEYDEST;

Update der Overlay Surface

Zuletzt aktualisieren die Overlay Surface. Un-

serer Beispielprogramm berechnet einen 2D-

Grafikeffekt in einem 32-Bit-RGB-Puffer, der in

die Overlay Surface zu kopieren ist. Wenn das

Pixelformat der Surface von dem des Puffers

abweicht, müssen Sie das Format konvertie-

ren, wie dies der Quelltext des Beispielpro-

gramms vorführt.

Um auf den Inhalt einer Surface zuzugreifen,

verwenden Sie die Lock(...)-Methode. Sie er-

halten dann eine Struktur, welche die Auflö-

sung des Bitmaps und die Bytes pro Bitmap-

zeile beschreiben:

pSurface->Lock(NULL, &ddsd,
DDLOCK_SURFACEMEMORYPTR|DDLOCK_WAIT,
NULL);

Dorthin kopieren Sie das Bild des Grafikeffek-

tes und beenden den Schreibzugriff mit:

Surf = (BYTE*)ddsd.lpSurface;

177

PC
 M

ag
az

in
 3

/2
00

4
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Quelltexte sowie fertig übersetzte Routinen > CD
Praxis/Programmierung/PC Underground

DVDCD

Color Keying: Das
Overlay erzeugt
animierte Fensterhin-
tergründe; auch Schrift
kann es einfärben.

Notifiy Icon: Unsere Applikation in der Tray
Bar, mit Kontextmenü und Tooltip.

DWORD *src = ...;
for(y = 0; y < 240; y++)
{
memcpy(pSurf,src,sizeof(DWORD)*320);
pSurf += ddsd.lPitch;
src += 320;
}

pSurface->Unlock(NULL);

System Tray

Anwendungen, die im Hintergrund arbeiten

und keine ständige Benutzerinteraktion vor-

aussetzen, brauchen kein ständig geöffnetes

Anwendungsfenster. Die notwendigen Funk-

tionen sollten aber trotzdem bequem erreich-

bar sein, wozu sich der so genannte System

Tray anbietet: Dort steuert der Benutzer-Pro-

gramme per Icon.

Sie programmieren diese so genannten Notify

Icons vergleichsweise leicht nach Anleitung.

Das Konzept der Notify Icons sieht vor, dass

Benutzer-Interaktionen wie ein Mausklick auf

das Icon als Nachricht an ein Windowsfenster

geschickt werden. Das bedeutet, Sie müssen

wie gewohnt ein Fenster und eine Nachrich-

ten-Callback-Funktion programmieren, ohne

das Fenster darstellen zu müssen. Erzeugen Sie

zuerst ein Fenster wie im Beispiel eine Dialog-

Box aus dem Ressource File:

HWND hWnd = CreateDialog(hInst,
MAKEINTRESOURCE(IDD_DLG_DIALOG),
NULL, (DLGPROC)messageHandler);

Als nächstes legen Sie eine NOTIFYICONDATA-

Struktur an, die die notwendigen Informatio-

nen für das Notify Icon enthält. Allerdings gibt

es zwei Versionen dieser Struktur, die unter-

schiedliche Informationen und so verschiede-

ne Strukturgrößen aufweisen. Welche der bei-

den Varianten Sie verwenden, hängt von der

Version der Windows eigenen Shell32.dll ab.

Um die Versionsnummer abzufragen, bieten

die meisten Windows-DLLs wie Comctl32.dll,

Shdocvw.dll und Shlwapi.dll die Methode

DllGetVersion an. Sie laden also diese DLL, ho-

len die Adresse der DllGetVersion-Methode

und fragen mit ihrer Hilfe die Versionsnummer

ab. Einen Beispielcode finden Sie in unserem

Programm und der MSDN-Hilfe von MS Visual

C++. So definieren Sie die kürzere Version der

Struktur, die auch schon alle Felder enthält:

typedef struct _NOTIFYICONDATA {
DWORD cbSize;

Zuerst tragen Sie in Ihre Struktur die tatsächli-

che Größe ein:

NOTIFYICONDATA niData;

Nun geben Sie an, welche Felder Sie mit validen

Werten füllen. Sie geben ein Icon, eine Tooltip-

Nachricht und eine Fensternachricht an:

niData.uFlags =
NIF_ICON | NIF_MESSAGE | NIF_TIP;

// beliebige ID
niData.uID = TRAY_ICON_ID;

Nun geben Sie an, welches Windows-Fenster

(bzw. dessen Message-Handler), die Nachrich-

ten vom Notify Icon empfängt. Diese Callback-

Funktion rufen Sie mit einer ausgewählten

Nachricht TWM_TRAYMSG auf, deren Wert

sich zwischen WM_APP und 0xBFFF befindet,

sobald ein Mouse Event im Bereich des Notify

Icons auftritt.

niData.hWnd = hWnd;

Dann bleibt also noch der Tooltip-Text und das

Icon, die Sie in die Struktur eintragen:

lstrcpyn(niData.szTip, _T(„Text“),
sizeof(niData.szTip)/sizeof(TCHAR));

Zuletzt schicken Sie die Nachricht an das Sys-

tem ab, die das Traybar Icon hinzufügt:

Shell_NotifyIcon (NIM_ADD, &niData);

Jetzt geben Sie noch die Ressourcen für das

Icon frei:

if (niData.hIcon && DestroyIcon...

Die Nachrichten, die aufgrund des Notify Icon

gesendet werden, bearbeiten Sie also in der

Message Handler Funktion der oben angeleg-

ten Dialog-Box:

INT_PTR CALLBACK messageHandler(
HWND hWnd, UINT msg,
WPARAM wP, LPARAM lP)...

Ein doppelter Mausklick soll die Dialog-Box

darstellen. Ein Klick der rechten Maustaste ruft

die createContextMenu(...)-Methode auf, die

ein Kontext-Menü aufbaut und darstellt:

void createContextMenu
(HWND hWnd)

{
HMENU hMenu =CreatePopupMenu();

if (hMenu)
{

InsertMenu(hMenu, -1,
MF_BYPOSITION, TWM_BEISPIEL,
_T(„Beispieleintrag“));

SetForegroundWindow(hWnd);...

Die CreatePopupMenu()-Methode erzeugt ein

zunächst leeres Drop-Down-Menü. Mit der In-

sertMenu(...)-Methode fügen Sie Menüpunkte

hinzu. Die beiden letzten Parameter geben die

Konstante für die Nachricht an, die im Falle ei-

nes Anklickens gesendet wird, sowie den Text

des Eintrags. Nach dem Aufbau des Menüs

sorgt SetForegroundWindow(...) dafür, dass es

sichtbar wird. GetCursorPos(...) gibt die Positi-

on des Mauszeigers aus, und dementspre-

chend platzieren Sie das Drop-Down-Menü.

Dies und die Eingabenbehandlung leistet der

TrackPopupMenu(...)-Befehl, dem Sie auch

das Window-Handle des Fensters übergeben,

das die Nachrichten empfangen soll. Nachdem

das Menü verlassen wird, geben Sie die Res-

sourcen mit DestroyMenu(hMenu) wieder frei.

Da Sie hier wieder das Window-Handle der

Dialog-Box angegeben haben, müssen Sie den

Message Handler noch um folgendes erwei-

tern:

switch (msg)
{
...
case WM_COMMAND:

trayMsg = LOWORD(wParam);

switch (trayMsg)
{ case TWM_BEISPIEL:
// Beispieleintrag wurde gewählt

break; }
return 1;
...

}

Damit haben Sie schon alle Werkzeuge in der

Hand, die Sie für Notify Icons benötigen. Wenn

Sie das Programm verlassen, müssen Sie das

Icon aus der Liste löschen:

niData.uFlags = 0;
Shell_NotifyIcon(NIM_DELETE,&niData);

: et

PROGRAMMIERUNG : PC UNDERGROUND

178

PC
 M

ag
az

in
 3

/2
00

4
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

2D Effekt: Diese
Effekte stellt unser
Programm auf Ihrem
Desktop dar.

