176

PC Magazin 3/2004 : www.pc-magazin.de

PROGRAMMIERUNG :

Individualisieren Sie lhr
Windows System mit einem
selbst programmierten,
animiertem Desktop-
Hintergrund. Hier erfahren
Sie, wie Sie Video Overlays
verwenden und lhre
Programme iiber den System
Tray erreichen.

Carsten Dachsbacher

PC UNDERGROUND

Windows verschonern mit

Fensterin® 4

«i

¢

In dieser Ausgabe zeigen wir [hnen, wie

Sie Thr Windows-System mit einem
Desktop-Hintergrund animieren. Es gibt prin-
zipiell zwei Wege, dies zu erreichen. Der erste
nutzt die so genannten Windows Hooks, um
sich in das System einzuh&ngen. So fangen Sie
die Nachrichten ab, die das Zeichnen des
Desktops anstofien. Der Desktop ist per Defini-
tion auch ein Windows-Fenster.
Der andere Weg verwendet Overlays. Dabei
handelt es sich um 2D-Bitmaps, die die Grafik-
karte beliebig auf dem Bildschirm platzieren
kann. Sie kdnnen sie so verwenden, dass Sie
nur bestimmte Farben auf dem Bildschirm wie
die Farbe Thres Desktop-Hintergrunds ersetzen.
Auf den Overlays kénnen Sie dann beliebige
Grafikeffekte darstellen.

Direct Draw und Video Overlays

Im ersten Schritt initialisieren Sie DirectDraw
wie andere DirectX-Komponenten: Sie erzeu-
gen eine Instanz des DirectDraw Objektes.

LPDIRECTDRAW7 pDirectDraw;
DirectDrawCreateEx(NULL,

Mit SetCooperativeLevel(...) bestimmen Sie
das Top-Level-Verhalten Ihres Programms. Die
Konstante DDSCL_NORMAL bedeutet, dass es
sich um eine herkdmmliche Anwendung mit

DirectDraw Overlays
B "o

L

=N

einem Fenster handelt. Andere Werte deuten
z.B. auf Vollbild- oder Exclusive-Level-Anwen-
dungen hin. Achten Sie bei DirectX-Funk-
tionen immer auf die Riickgabewerte und
priifen Sie eventuell auftretende Fehler. Um
mit DirectDraw etwas darzustellen, ben6tigen
Sie immer eine so genannte Primary Surface.
Surfaces sind Speicherbereiche, in denen
Bitmaps verschiedenste Formate und optional
mit Hintergrund- oder Tiefenpuffern reprasen-
tieren.

Die Primary Surface ist diejenige, die die fir
den Benutzer sichtbare Bitmap enthélt. Sie be-
schreiben die Eigenschaften der Surface mit
der ddsd-Struktur:

. “1.

A N’

DDSURFACEDESC2 ddsd;

Das dwFlags-Feld gibt an, welche Strukturein-
trage Sie ausfiillen. Mit dem dwCaps-Feld le-
gen Sie fest, dass es sich um eine Primary Sur-

face handelt, die Sie so erzeugen:
pDirectDraw->CreateSurface(
&ddsd, &pDDSurfacePrimary, NULL);

Overlay Surfaces

Als néchstes bendtigen Sie noch eine Surface
fir das Overlay. Bevor Sie diese anlegen, tiber-
priifen Sie, ob die Grafikhardware Overlays un-
terstlitzt. Dazu lassen Sie sich die Device Caps

Quelltexte sowie fertig iibersetzte Routinen > CD
Praxis/Programmierung/PC Underground

von Direct Draw geben. In dieser Struktur sind
alle Fahigkeiten der Hardware beschrieben:

DDCAPS ddCaps;
INIT_DDSTRUCT(ddCaps);
pDirectDraw->GetCaps (&ddCaps,NULL):

Overlays werden unterstiitzt, wenn das folgen-
de Flag gesetzt ist: ddCaps.dwCaps &
DDCAPS_OVERLAY. Wenn das der Fall ist, le-
gen Sie die Overlay Surface an. Beginnen Sie
wieder damit, die gew{inschten Eigenschaften
der Surface zu beschreiben:

DDSURFACEDESC2 ddsdOv;
INIT_DDSTRUCT(ddsdOv);

Die Bedeutung der einzelnen Flags beschreibt
detailliert die MSDN Hilfe (http://msdn.micro
soft.com). Zusammengefasst: Sie beschreiben
eine Overlay Surface per Hintergrundpuffer,
der im Video-Speicher liegt, mit einer exem-
plarischen Grofle von 320x240 Pixel. Jetzt
miissen Sie noch fiir das Pixelformat ent-
scheiden, ob die Surface die Farbwerte im
RGB- oder YUV-Format enthdlt und mit wel-
cher Genauigkeit sie gespeichert werden. Die
meisten Grafikkarten unterstiitzen 32-Bit-
RGBA-Overlays, die Sie auch im Folgenden
anlegen. Das Beispielprogramm beherrscht
weitere Pixelformate, um alle Grafikkarten
bedienen zu kénnen:

DDPIXELFORMAT overlayFormat =

{ sizeof(DDPIXELFORMAT),
DDPF_RGB, 0, 32, 0x00FF0000,

0x0000FF00, O0x000000FF, O };

Darstellung der Overlays

Als letztes programmieren Sie den aufwen-
digsten Teil, indem Sie die Overlay Surface
darstellen. Dabei geben Sie an, welchen Aus-
schnitt des Overlays Sie wo auf dem Bild-
schirm darstellen wollen. Dabei miissen Sie
eventuelle Beschrdankungen wie Gré3e und
Position des Overlays berticksichtigen. Zu-
dem wird manchmal eine leichte Skalierung
bzw. Streckung des Overlays gefordert. Alle
Anforderungen sind in den Device Caps des
Direct Draw Objektes enthalten, die Sie erfiil-
len miissen.

Zunéachst positionieren Sie die Overlays, die
zwei RECT-Strukturen definieren. Dann vergro-
Bern Sie das Overlay auf den ganzen Bild-
schirm:

RECT rs = { 0,

Wenn Sie das Overlay in Originalgrofle darstel-
len wollen, miissen Sie die minimale Skalie-
rung einhalten, wozu Sie diese Eintrage ver-
wenden:

1, 320, 240 };

DWORD scale = max(1000,
ddCaps.dwMinOverlayStretch);

Die Grofen fiir das Overlay beschréanken Sie,
indem Sie den darzustellenden Ausschnitt zu-

schneiden:
DWORD s = ddCaps.dwAlignSizeSrc;
if (ddCaps.dwCaps&DDCAPS_ALIGNSIZESRC
&& s)
rs.right -= rs.right % s;

Das Ziel-Rechteck vergréfiern Sie so, dass es
ein Vielfaches des vorgegebenen Alignments
wird:

DWORD s = ddCaps.dwAlignSizeDest;

if (ddCaps.dwCaps&DDCAPS_ALIGNSIZEDEST
&& s)
rd.right=((rd.right+s-1)/s)*s;

Damit stellen Sie das Overlay dar, wie es nach
folgendem Funktionsaufruf das Listing der
Heft-CD fortfiihrt:

DDOVERLAYFX ovfx; DWORD dwUpdateFlags;

Das Overlay bedeckt Ihren gesamten Bild-
schirm, so dass Sie nichts anderes mehr se-
hen. Da Sie aber nur Teile wie den Desktophin-
tergrund einfarben wollten, verwenden Sie das
so genannte Color Keying.

Das Verfahren ersetzt nur eine bestimmte Far-
be oder einen bestimmten Farbbereich per
Overlay auf dem Bildschirm. So férben Sie
Desktop- und Fensterhintergriinde oder Schrift
mit Farbwerten ein.

Die DDColorMatch-Funktion passt den angege-
benen Farbwert (hier (0,0,0): schwarz) an das
Pixelformat der Primary Surface an. Jetzt teilen
Sie der Primary Surface den Color Key Wert
mit und aktivieren die Funktionalitat, indem Sie
die dwUpdateFlags vor dem Aufruf der Up-
dateOverlay-Methode modifizieren:

DDCOLORKEY colorKey;
colorKey.dwColorSpaceLowvalue =
colorKey.dwColorSpaceHighValue

U Tuls Winkow el
D B R | Gy [raw -]
=) R -||lsa

DDColorMatch(pDDSurfacePrimary,
RGB(0, 0, 0));

pDDSurfacePrimary->SetColorKey(
DDCKEY_DESTOVERLAY, &colorKey);

if (ddCaps.dwCKeyCaps &
DDCKEYCAPS_DESTOVERLAY)
dwUpdateFlags |= DDOVER_KEYDEST;

Update der Overlay Surface

Zuletzt aktualisieren die Overlay Surface. Un-
serer Beispielprogramm berechnet einen 2D-
Grafikeffekt in einem 32-Bit-RGB-Puffer, der in
die Overlay Surface zu kopieren ist. Wenn das
Pixelformat der Surface von dem des Puffers
abweicht, miissen Sie das Format konvertie-
ren, wie dies der Quelltext des Beispielpro-
gramms vorfiihrt.

Um auf den Inhalt einer Surface zuzugreifen,
verwenden Sie die Lock(...)-Methode. Sie er-
halten dann eine Struktur, welche die Auflo-
sung des Bitmaps und die Bytes pro Bitmap-
zeile beschreiben:

pSurface->Lock(NULL, &ddsd,

DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT,
NULL);

Dorthin kopieren Sie das Bild des Grafikeffek-
tes und beenden den Schreibzugriff mit:
(BYTE*)ddsd.1lpSurface;

Surf =

Animation OFf
Bilinzar Interpolation OFF

Shiow Ab
il I:""F'IC Underground

Notifiy Icon: Unsere Applikation in der Tray
Bar, mit Kontextmenii und Tooltip.

#include "2deffect .k

void ddCleantp()
€

SAKE RELEASE(pbS
SAFE_RELEASE(pDDSw
SAFE_RELEASE(DDire

HRE:

DDSURFACEDESCZ ddsd:

if (IpDirectDray)
veturn RFAT.

RUCT(dded):

s duFlags - DDSD_CAFs,
ddsd ddsCaps dwCaps = DDSCAPS PRIMARYSURFACE.
r Drav—>C: addsd,

return

Bool ddInitialize()
if (IFAIIED(
D:

€
1t IFALLEDQ

<
$F (IFATTRD(AdCrestmPr

riaca()))
return trus;

>
¥

:

irectDravCreatsEs(NULL, (VOID+=)&pDirsctDraw, IID IDirectDrav?, NULL)))

BDirectDrav->SetCooperativelevel (NULL, DDSCL NORMAL)))

Color Keying: Das
Overlay erzeugt
animierte Fensterhin-
tergriinde; auch Schrift
kann es einfirben.

PC Magazin 3/2004 : www.pc-magazin.de

178

PC Magazin 3/2004 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

DWORD *src = ...;
for(y = 0; y < 240; y++)
{

memcpy (pSurf,src,sizeof (DWORD) *320) ;
pSurf += ddsd.1lPitch;

src += 320;

}

pSurface->Unlock (NULL);

System Tray

Anwendungen, die im Hintergrund arbeiten
und keine standige Benutzerinteraktion vor-
aussetzen, brauchen kein stdndig geoffnetes
Anwendungsfenster. Die notwendigen Funk-
tionen sollten aber trotzdem bequem erreich-
bar sein, wozu sich der so genannte System
Tray anbietet: Dort steuert der Benutzer-Pro-
gramme per [con.

Sie programmieren diese so genannten Notify
Icons vergleichsweise leicht nach Anleitung.
Das Konzept der Notify Icons sieht vor, dass
Benutzer-Interaktionen wie ein Mausklick auf
das Icon als Nachricht an ein Windowsfenster
geschickt werden. Das bedeutet, Sie miissen
wie gewohnt ein Fenster und eine Nachrich-
ten-Callback-Funktion programmieren, ohne
das Fenster darstellen zu missen. Erzeugen Sie
zuerst ein Fenster wie im Beispiel eine Dialog-
Box aus dem Ressource File:

HWND hWnd = CreateDialog(hInst,
MAKEINTRESOURCE (IDD_DLG_DIALOG),
NULL, (DLGPROC)messageHandler);

Als nachstes legen Sie eine NOTIFYICONDATA-
Struktur an, die die notwendigen Informatio-
nen fiir das Notify Icon enthélt. Allerdings gibt
es zwei Versionen dieser Struktur, die unter-
schiedliche Informationen und so verschiede-
ne StrukturgréfSen aufweisen. Welche der bei-
den Varianten Sie verwenden, héngt von der
Version der Windows eigenen Shell32.dll ab.
Um die Versionsnummer abzufragen, bieten
die meisten Windows-DLLs wie Comnctl32.dll,
Shdocvw.dll und Shlwapi.dll die Methode
DllGetVersion an. Sie laden also diese DLL, ho-
len die Adresse der DliGetVersion-Methode
und fragen mit ihrer Hilfe die Versionsnummer

2D Effekt: Diese
Effekte stellt unser
Programm auf lhrem
Desktop dar.

ab. Einen Beispielcode finden Sie in unserem
Programm und der MSDN-Hilfe von MS Visual
C+ +. So definieren Sie die kiirzere Version der
Struktur, die auch schon alle Felder enthalt:

typedef struct _NOTIFYICONDATA {

DWORD cbSize;
Zuerst tragen Sie in Thre Struktur die tatsachli-
che Grof3e ein:

NOTIFYICONDATA niData;

Nun geben Sie an, welche Felder Sie mit validen
Werten fiillen. Sie geben ein Icon, eine Tooltip-
Nachricht und eine Fensternachricht an:

niData.uFlags =
NIF_ICON | NIF_MESSAGE | NIF_TIP;

/| beliebige ID
niData.uID = TRAY_ICON_ID;

Nun geben Sie an, welches Windows-Fenster
(bzw. dessen Message-Handler), die Nachrich-
ten vom Notify Icon empfangt. Diese Callback-
Funktion rufen Sie mit einer ausgewéhlten
Nachricht TWM_TRAYMSG auf, deren Wert
sich zwischen WM_APP und 0xBFFF befindet,
sobald ein Mouse Event im Bereich des Notify
Icons auftritt.

niData.hWnd = hWnd;

Dann bleibt also noch der Tooltip-Text und das
Icon, die Sie in die Struktur eintragen:

1strcpyn(niData.szTip, _T(,Text“),
sizeof (niData.szTip)/sizeof (TCHAR));

Zuletzt schicken Sie die Nachricht an das Sys-
tem ab, die das Traybar Icon hinzufligt:

Shell_NotifyIcon (NIM_ADD, &niData);

Jetzt geben Sie noch die Ressourcen fiir das
Icon frei:

if (niData.hIcon && DestroyIcon...

Die Nachrichten, die aufgrund des Notify Icon
gesendet werden, bearbeiten Sie also in der
Message Handler Funktion der oben angeleg-
ten Dialog-Box:

INT_PTR CALLBACK messageHandler(
HWND hWnd, UINT msg,
WPARAM wP, LPARAM 1P)...

Ein doppelter Mausklick soll die Dialog-Box
darstellen. Ein Klick der rechten Maustaste ruft
die createContextMenu(...)-Methode auf, die
ein Kontext-Meni aufbaut und darstellt:

void createContextMenu
(HWND hwWnd)

{
HMENU hMenu =CreatePopupMenu();

if (hMenu)
{

InsertMenu(hMenu, -1,
MF_BYPOSITION, TWM_BEISPIEL,
_T(,Beispieleintrag®“));

SetForegroundWindow(hWwnd);...

Die CreatePopupMenu()-Methode erzeugt ein
zundchst leeres Drop-Down-Menii. Mit der In-
sertMenu(...)-Methode fiigen Sie Meniipunkte
hinzu. Die beiden letzten Parameter geben die
Konstante fiir die Nachricht an, die im Falle ei-
nes Anklickens gesendet wird, sowie den Text
des Eintrags. Nach dem Aufbau des Meniis
sorgt SetForegroundWindowy(...) dafiir, dass es
sichtbar wird. GetCursorPos(...) gibt die Positi-
on des Mauszeigers aus, und dementspre-
chend platzieren Sie das Drop-Down-Mend.
Dies und die Eingabenbehandlung leistet der
TrackPopupMenu(...)-Befehl, dem Sie auch
das Window-Handle des Fensters tibergeben,
das die Nachrichten empfangen soll. Nachdem
das Menii verlassen wird, geben Sie die Res-
sourcen mit DestroyMenu(hMenu) wieder frei.
Da Sie hier wieder das Window-Handle der
Dialog-Box angegeben haben, miissen Sie den
Message Handler noch um folgendes erwei-
tern:

switch (msg)

{

case WM_COMMAND:
trayMsg = LOWORD(wParam);

switch (trayMsg)

{ case TWM_BEISPIEL:

// Beispieleintrag wurde gewdhlt
break; }

return 1;

}

Damit haben Sie schon alle Werkzeuge in der
Hand, die Sie fiir Notify Icons benotigen. Wenn
Sie das Programm verlassen, miissen Sie das
Icon aus der Liste 16schen:

niData.uFlags = 0;
Shell NotifyIcon(NIM_DELETE,&niData);

cet

