PC Magazin 4/2004 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

Mit einfach zu erlernenden
Techniken kdnnen Sie lhren
Windows Programmen eine
ganz personliche Note geben.
Wir zeigen lhnen, was Sie mit
Windows-Hooks und GDI-
Funktionen erreichen kdnnen.

Carsten Dachsbacher

Windows-Hooks und GDI-Funktionen

Windows fur
Individualisten

Gelangweilt klickt der Anwender alltagli-

che Windows-Dialoge ungelesen weg.
Doch Sie gestalten in Ihrem Programm Fenster
und Dialoge so, dass lhnen die Aufmerksam-
keit sicher ist. Dazu verwenden Sie GDI Funk-
tionen (Graphics Device Interface), um belie-
big transparente Fenster zu erzeugen und
Windows-Hooks, um Window-Messages ab-
zufangen, zu modifizieren und so ein verdn-
dertes Verhalten oder Aussehen zu erreichen.
Windows-Hooks sind ein Mechanismus, mit
dem eine Funktion beliebige Events wie Nach-
richten, Mausbewegungen oder Tastendriicke
abfangen kann, bevor sie an eine Applikation
gesendet werden. Die Funktion kann auf diese
Events reagieren und in manchen Féllen sie
modifizieren oder verwerfen. Solche so ge-
nannten Filterfunktionen werden unterschie-

den nach dem Typ von Events, die Sie beein-
flussen wollen. Solche Funktionen miissen Sie
durch ein Programm installieren — im Engli-
schen wird von attach geredet. Fiir ein und
denselben Typ wie einen Maus-Hook konnen
Sie mehrere Filterfunktionen installieren. Es er-
gibt sich eine Kette von Funktionen: am An-
fang der Kette steht die neueste, am Ende die
alteste Funktion. Tritt das Event ein, ruft Win-
dows die erste Funktion auf. Die Filterfunktio-
nen miissen das jeweils nachste Element der
Kette, bzw. die letzte Filterfunktion die erste, al-
so Original-Routine aufrufen.

Hooks setzen Sie mit den Funktionen SetWin-
dowHookEx und UnhookWindowsHookEx.
Die Tabelle zeigt die verschiedenen Typen von
Hooks und die jeweiligen Konstanten fir die
obigen Methoden.

oo =NDP)GetPand, "OldUindDwPrDcedure"; :
. pc Underground - Transparenz und Menii Demo @
mpH F=8 PC Underground Help
Tew Chrl+M
nal open... Chrl40
Save Chrls
Save As...
B o P i | Bunt: Unser Beispiel-
hWne ; : indowlong({ hWnd. GWL_EXSTVLE) % programm zeigt trans-
lDwAi_._,..PnntPrewew_:,}._.m._ P00, LV ALPHA 3. prog g
: - parente Pull-down-
; Meniis mit Windows
izage Bt wenn die Auswahl im Menu =sich Enc Hook
00KS.

PC Magazin 4/2004 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

Quelltexte sowie fertig iibersetzte Routinen > CD
Heft Add-ons\Programmier-Listings\PC_Underground

Einhaken und Window Messages

Um lhnen die Anwendung des Hook-Mecha-
nismus zu demonstrieren, fithren wir Sie hier
durch die wichtigen Schritte unseres Beispiel-
programms. Dieses installiert eine Filterfunkti-
on, die die Window-Messages abfangen soll —
nicht fiir alle Fenster, sondern fir die Pull-
down-Meniis der eigenen Applikation.

Zu Beginn des Programms, in der WinMain-
Funktion, wird eine Fensterklasse registriert
und ein Fenster mit einem Menii generiert.
Dieses bekommt — wie jedes Fenster — eine
Message-Handler-Funktion, um auf Aktionen
des Benutzers und Windows-Nachrichten zu
reagieren. Wenn eine Anwendung ein Fenster
offnet, wird diese Funktion mit der
WM_CREATE-Message aufgerufen. Darin
wird ein Client-Fenster angelegt und ein Hook
installiert:

static HHOOK hHookID = 0;

hHookID = SetWindowsHooKEX (
WH_CALLWNDPROC, HookCallWindowProc,
0,GetWindowThreadProcessId(hwnd,0));

Der erste Parameter ist die Konstante, die be-
stimmt, dass der Hook vom Typ Window Mes-
sages ist. Der zweite gibt die Adresse der
Hook-Funktion an, zu der wir gleich kommen,
und der dritte Parameter ist 0, wenn sich diese
Funktion im Code Segment des aktuellen
Threads (Ihres Programms) befindet. Der letz-
te Parameter gibt die Prozess ID an, fiir die der
Hook wirksam sein soll.

Die zweite hier wichtige Message des Message-
Handlers ist WM_DESTROY. In diesem Fall
wird der Hook wieder aus der Filterfunktion-
Kette entfernt:

if (hHookID)
UnhookWindowsHookEx (hHookID);

AnschlieBend werfen Sie einen genaueren
Blick auf die Hook-Filterfunktion, deren Kopf
wie folgt definiert ist:

LRESULT CALLBACK HookCallWindowProc
(int nCode, WPARAM wP, LPARAM 1P)
{ CWPSTRUCT cwps; LONG handle;

CHAR szClass[128];

Wenn der nCode- Parameter den Wert HC_AC-
TION enthalt, interpretieren Sie den Wert des
[P-Parameters als Zeiger auf eine
CPWSTRUCT. Diese Struktur enthdlt alle Para-
meter einer Window-Message:

typedef struct tagCWPSTRUCT {
LPARAM 1Param; WPARAM wParam;
UINT message; HWND hwnd;
} CWPSTRUCT;

Also kopieren Sie die Nachricht:

if(nCode == HC_ACTION)
{CopyMemory(&cwps, (void*)1P,
sizeof(CWPSTRUCT));

So analysieren und reagieren Sie anschliefSend
auf die Nachricht, wenn sie ein Fenster anle-
gen soll:

switch(cwps.message)
{case WM_CREATE:
GetClassName(cwps.hwnd, szClass,127);
if (1strcmpi(szClass, ,#32768“)==0)
{handle = SetWindowLong(
cwps.hwnd, GWL_WNDPROC,
(LONG)SubClassWindowProc);
SetProp(cwps.hwnd,
,0ldWindowProcedure”,
(HANDLE) handle);
} break; }

Wenn ein Fenster erzeugt wird, enthalt die
Nachrichten-Struktur die WM_CREATE-Messa-
ge. Pull-down-Mentis erkennen Sie daran, dass
der Klassenname #32768 lautet. In diesem Fall
verbiegen Sie den Zeiger des Window-Messa-
ge-Handlers fiir dieses neue Pull-down-Menii
auf die Funktion SubClassWindowProc(...),
die Sie selbst definieren. Sie speichern die
Adresse des normalen Message-Handler mit
der SetProp(...)-Methode. Die Adresse kénnen
Sie zu jedem Zeitpunkt wieder abfragen, da sie
mit dem HWND des Pull-down-Menis assozi-
iert ist. Zuletzt rufen Sie noch die néachste
Funktion der Filterkette auf:

return CallNextHookEx (
(HHOOK)WH_CALLWNDPROC,
nCode, wParam, 1lParam); }

Als nachstes beschaftigen Sie sich mit der neu
installierten Fensterfunktion fiir die Pull-down-
Menis [hrer Applikation. Fenster-Attribute wie

MINI-CD

CcDh

Transparenz kénnen Sie hinzufiigen, wenn Sie
die SubClassWindowProc(...) Funktion mit der
WM _CREATE-Message aufrufen. Unser Fall soll
das Aussehen anderweitig modifizieren und
den Hintergrund der Menus mit einem Farb-
verlauf versehen.

Dazu bearbeiten Sie die WM_PAINT-Nachricht.
Das Prinzip ist folgendermafien: Wenn eine
WM_PAINT-Nachricht eintrifft, fangen Sie die-
se ab und erzeugen sich zuerst zwei Device
Kontexts und Bitmaps, die die Grof3e des Me-
nu-Fensters besitzen:

HDC tempHDC, tempHDC2;

RECT rect;

HBITMAP bitmap, bitmap2;

GetClientRect(hWnd, &rect);

tempHDC = CreateCompatibleDC(NULL);

bitmap = CreateCompatibleBitmap(
GetDC(GetDesktopWindow()),
rect.right, rect.bottom);

tempHDC2 = ...;bitmap2 = ...;

SelectObject(tempHDC, bitmap);

SelectObject(tempHDC2, bitmap2);

In eine Bitmap (bitmap2) zeichnen Sie einen
Farbverlauf, wobei Ihnen z.B. die CreateSolid-
Brush(..)- und FillRect(..)-GDI-Funktionen hel-
fen. Im anderen Bitmap (bitmap) mochten Sie
ein Bild des Originialmenus darstellen. Dazu
bedienen Sie sich eines Tricks! Es gibt eine
Window-Message (WM _PRINTCLIENT), die
fur das Drucken von Fensterinhalten gedacht
ist. Diese zeichnet den Inhalt des Fensters
(oder Pull-down-Meniis) in einen beliebigen
Device-Kontext. Also verwenden Sie diese Me-
thode, um sich vom Original-Message-Handler
das Menti in das Bitmap bzw. den assoziierten
Device-Kontext zeichnen zu lassen:

Filterfunktionstypen

WH_CALLWNDPROC
WH_CBT

WH_DEBUG
WH_FOREGROUNDIDLE
WH_GETMESSAGE
WH_JOURNALPLAYBACK
WH_JOURNALRECORD
WH_KEYBOARD
WH_MOUSE
WH_MSGFILTER

WH_SYSMSGFILTER
WH_SHELL

Window Messages von SendMessage(...) verschickt

System Aktionen fiir Computer Based Training

Verhindert den Aufruf anderer Filter

Wird bei Idle der Vordergrund-Applikation aufgerufen

Fiir Nachrichten von oder fiir GetMessage(...) und PeekMessage
Wiedergabe von Tastatur- oder Maus-Events

Aufzeichnen von Tastatur- oder Maus-Events

Bearbeiten, Modifizieren oder Verwerfen von Tastatur-Events
Bearbeiten, Modifizieren oder Verwerfen von Maus-Events

Bearbeiten oder Modifizieren von Nachrichten fiir Dialog/Message
Boxes, Scroll Bars oder Meniis von Applikationen

wie oben nur fiir das System, nicht fiir Applikationen

Aktionen von Top-Level-Fenstern (Erzeugen, Zerstéren)

PC Magazin 4/2004 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

|
dowFr
{WNDPROC)GetProp(hind,

LRESULT CALTEACK SpblClass]
WNDP! din

int T

Hm%!r¢ewﬂ
REC’ 3 R
HBITHAS Lt nog

\#H‘UND hWnd, UINT uMsg., WPARAM wFaram, LPARAM 1Param

"0ldWindowProcedurs”)

- [O]X]

Der etwas andere

About Dialog: Per
Pixel-Transparenz

svitch(uMsg)

{ |

case w_cih,
o’ das Hegu a
IS e (b
s rpSetLayereddindo
break; J

(Tansparent sein soll

Shutes(hWnd, 0O,

ca=ze WM_KEVDOWN
caze OxleS:

GUL_EXSTYLE, GetWindowlong(hWnd, GUL EESTYIE) |
200, IWA ATPHA).

77 die=e heiden Messages sind intersssant, wenn dis Auswahl im Menu =ich andert

erstaunen den Anwen-
der plakative Effekte
mit Layered Windows.

WS_EX L

— Minimigren

0O Maximieren

¥ Schliefien Al

Kontext-Meniis: Die WH_CALLWNDPROC-

Hooks greifen auch hier ein.

// alter Message Handler

WNDPROC oldWindowProc = (WNDPROC)
GetProp(hWnd, “0OldWindowProcedure®) ;

// Bitmap léschen mit Menuhintergrund

FillRect(tempHDC, &rect,

(HBRUSH) GetSysColor (COLOR_MENU));
CallwindowProc(oldwindowProc, hWnd,
WM_PRINTCLIENT, (LPARAM)tempHDC,
PRF_CLIENT | PRF_CHECKVISIBLE);

Der letzte Parameter enthalt Flags, die ange-
ben, dass Sie den Fensterinhalt darstellen und
auf Sichtbarkeit priifen. Jetzt kopieren Sie die
Bitmap mit dem Menii iber die Bitmap mit
dem Farbverlauf. Dabei stanzen Sie die Menii-
Hintergrundfarbe aus, damit Sie nur die Pixel,
die Teile des Meniis enthalten, tiberschreiben:

TransparentBlt(tempHDC2, rect.left,
rect.top, rect.right - rect.left,
rect.bottom - rect.top, tempHDC,
rect.left, rect.top, rect.right -
rect.left, rect.bottom - rect.top,
GetSysColor(COLOR_MENU));

Jetzt ist das Meni wie geplant gezeichnet und
Sie konnen es auf den Bildschirm kopieren:

BitBlt(GetDC(hwnd),

rect.left, rect.top, rect.right -

rect.left, rect.bottom - rect.top,
tempHDC2, 0, 0, SRCCOPY);

Nachdem Sie die Device-Kontexts und Bit-
maps wieder freigegeben haben, miissen Sie
Windows noch mitteilen, dass der Fensterbe-
reich fertig gezeichnet wurde:

ValidateRect(hwWnd, &rect);return 0;

Wenn Sie die Funktion mit Riickgabewert 0
verlassen, haben Sie die WM_PAINT-Nachricht

somit abgefangen, d.h. es werden keine weite-
ren Hook-Filterfunktionen oder Message-
Handler aufgerufen.

Genauso, wie Sie mit ValidateRect(..) ange-
ben, dass ein Bereich gezeichnet wurde, miis-
sen Sie dafiir sorgen, dass Teile des Meniis, die
neu gezeichnet werden miissen, entsprechend
bearbeitet werden. Dies ist der Fall, wenn ent-
weder ein neues Meniielement mit der Maus
oder Tastatur ausgewahlt wird. Die beiden ent-
sprechenden Nachrichten fangen Sie ab und
sorgen dafiir, dass das Menii vollstandig neu
gezeichnet wird. Allerdings geben Sie die
Nachricht weiter, da die Internas, z.B. welches
Element selektiert wurde, sonst nicht aktuali-
siert werden:

case WM_KEYDOWN:case Ox1e5:
GetClientRect (hWnd,&rect);
InvalidateRect (hWnd,&rect,false);
return CallwWindowProc(...);

Transparente Fenster

Zuvor haben wir bereits erwahnt, dass Sie Ih-
re Pull-down-Meniis auch transparent gestal-
ten konnen. Dazu bietet Windows 2000 und
XP entsprechende Funktionalitit. Die entspre-
chenden Methoden, um diese Funktionen zu
nutzen, sind in der Bibliothek User32.DLL ent-
halten. Diese miissen Sie, unter Umstanden je
nach SDK-Version, selbst definieren und aus
der DLL mit GetProcAdress(..) laden (siehe
Beispielprogramm). Die beiden Funktionen
sind SetLayeredWindowaAttributes und Upda-
teLayeredWindow. Mit ersterer kbnnen Sie ein
Fenster ganz einfach transparent machen wie
z.B. Pull-down-Mentis:

case WM_CREATE:

SetWindowLong (hWnd,GWL_EXSTYLE,
GetWindowLong (hWnd,GWL_EXSTYLE) |
WS_EX_LAYERED);

SetlLayeredWindowAttributes(hWnd,

0, 200, LWA_ALPHA); break;
Mit SetWindowLong(..) fligen Sie dem Fenster
das WS_EX LAYERED-Attribut hinzu. Dieses
ist Vorraussetzung fiir transparente Fenster. Mit
dem zweiten Aufruf ist das Fenster schon
transparent! Aufwéndiger, aber flexibler, ge-
staltet sich die Verwendung von UpdateLaye-

redWindow. Hiermit kénnen Sie ein Fenster
erzeugen, wobei Sie fiir jeden Pixel einen an-
deren Transparenzwert angeben konnen!
Analog zur WM_CREATE-Message werden an
den Dialog Message Handler WM _INITDIA-
LOG-Nachrichten versendet. Auf diese reagie-
ren Sie, indem Sie das _EX_LAYERED-Attribut
setzen. Jetzt konnen Sie ein Bitmap erstellen,
das die Farben und die Transparenz enthélt. Im
Beispiel erzeugen Sie zuerst Device-Kontexts
und eine Bitmap mit dem Pixelformat des
Desktops:

GetClientRect(hDlg, &rect);

HDC dcScreen = GetDC(NULL);

HDC dcMemory =
CreateCompatibleDC(dcScreen);

bmp = CreateCompatibleBitmap (
GetDC(GetDesktopWindow()),
rect.right, rect.bottom);

Anschlieend erzeugen oder laden Sie ein 32-
Bit-Image (mit Alpha Kanal) in den Speicher.
Dazu verwenden Sie einen Speicherbereich
und einen BITMAPINFOHEADER), der das inter-
ne Bild- und Pixelformat beschreibt. Dieses
Bild kopieren Sie dann in den Device-Context
dcMemory, wobei der Wert 256 exemplarisch
als Grof3e des Bitmaps dient:

DWORD image[256 * 256];
BITMAPINFO *pitmapinfo = ?;
SetDIBitsToDevice(...);

Jetzt konnen Sie die Attribute des Fensters mit
UpdateLayeredWindow setzen, wobei Sie bit-
te weitere Ausfithrungen im Web beachten:
http://msdn.microsoft.com/library/en-us/gdi/bit-
maps_3h3m.asp.

Zu den Attributen zahlt auch die Position und
Grofe des Fensters, der Ursprung der Bitmap
(srcPointer) und natiirlich die Beschreibung,
wie die Farb- und Transparenzwerte zu verar-
beiten sind:

BLENDFUNCTION blendPixelFunction =
{AC_SRC_OVER,0,255,AC_SRC_ALPHA};

Dabei bedeutet AC_SRC_ALPHA, dass das Bild
Alpha-Werte besitzt. Beachten Sie dabei, dass
die API mit premultiplied alpha arbeitet, d.h.
die Farbwerte multiplizieren Sie vorab mit dem
Alpha-Wert. Dabei interpretieren Sie Alpha-
Werte zwischen 0 und 255 als Zahlen zwi-
schen 0 und /. AC_SRC_OVER ist die momen-
tan einzig unterstiitzte Blending Operation, die
das Quellbild (das Fenster) iiber das Zielbild
(Hintergrund) legt. Legen Sie also die restli-
chen Attribute fest und rufen Sie die Funktion
UpdateLayeredWindow auf. set

Info:
www.dachsbacher.de/pcu
http://msdn.microsoft.com

