
Gelangweilt klickt der Anwender alltägli-

che Windows-Dialoge ungelesen weg.

Doch Sie gestalten in Ihrem Programm Fenster

und Dialoge so, dass Ihnen die Aufmerksam-

keit sicher ist. Dazu verwenden Sie GDI Funk-

tionen (Graphics Device Interface), um belie-

big transparente Fenster zu erzeugen und

Windows-Hooks, um Window-Messages ab-

zufangen, zu modifizieren und so ein verän-

dertes Verhalten oder Aussehen zu erreichen.

Windows-Hooks sind ein Mechanismus, mit

dem eine Funktion beliebige Events wie Nach-

richten, Mausbewegungen oder Tastendrücke

abfangen kann, bevor sie an eine Applikation

gesendet werden. Die Funktion kann auf diese

Events reagieren und in manchen Fällen sie

modifizieren oder verwerfen. Solche so ge-

nannten Filterfunktionen werden unterschie-

den nach dem Typ von Events, die Sie beein-

flussen wollen. Solche Funktionen müssen Sie

durch ein Programm installieren – im Engli-

schen wird von attach geredet. Für ein und

denselben Typ wie einen Maus-Hook können

Sie mehrere Filterfunktionen installieren. Es er-

gibt sich eine Kette von Funktionen: am An-

fang der Kette steht die neueste, am Ende die

älteste Funktion. Tritt das Event ein, ruft Win-

dows die erste Funktion auf. Die Filterfunktio-

nen müssen das jeweils nächste Element der

Kette, bzw. die letzte Filterfunktion die erste, al-

so Original-Routine aufrufen. 

Hooks setzen Sie mit den Funktionen SetWin-

dowHookEx und UnhookWindowsHookEx.

Die Tabelle zeigt die verschiedenen Typen von

Hooks und die jeweiligen Konstanten für die

obigen Methoden.

PROGRAMMIERUNG   : PC UNDERGROUND

194

PC
 M

ag
az

in
 4

/2
00

4 
 : 

 w
w

w
.p

c-
m

ag
az

in
.d

e

Mit einfach zu erlernenden

Techniken können Sie Ihren

Windows Programmen eine

ganz persönliche Note geben.

Wir zeigen Ihnen, was Sie mit

Windows-Hooks und GDI-

Funktionen erreichen können.

Carsten Dachsbacher

Windows-Hooks und GDI-Funktionen 

Windows für
Individualistenw

or
ks

ho
p

Bunt: Unser Beispiel-
programm zeigt trans-
parente Pull-down-
Menüs mit Windows
Hooks.



PC
 M

ag
az

in
 4

/2
00

4 
 : 

 w
w

w
.p

c-
m

ag
az

in
.d

e

Einhaken und Window Messages

Um Ihnen die Anwendung des Hook-Mecha-

nismus zu demonstrieren, führen wir Sie hier

durch die wichtigen Schritte unseres Beispiel-

programms. Dieses installiert eine Filterfunkti-

on, die die Window-Messages abfangen soll –

nicht für alle Fenster, sondern für die Pull-

down-Menüs der eigenen Applikation.

Zu Beginn des Programms, in der WinMain-

Funktion, wird eine Fensterklasse registriert

und ein Fenster mit einem Menü generiert.

Dieses bekommt – wie jedes Fenster – eine

Message-Handler-Funktion, um auf Aktionen

des Benutzers und Windows-Nachrichten zu

reagieren. Wenn eine Anwendung ein Fenster

öffnet, wird diese Funktion mit der

WM_CREATE-Message aufgerufen. Darin

wird ein Client-Fenster angelegt und ein Hook

installiert:

static HHOOK hHookID = 0;
hHookID = SetWindowsHookEx( 
WH_CALLWNDPROC, HookCallWindowProc,
0,GetWindowThreadProcessId(hWnd,0));

Der erste Parameter ist die Konstante, die be-

stimmt, dass der Hook vom Typ Window Mes-

sages ist. Der zweite gibt die Adresse der

Hook-Funktion an, zu der wir gleich kommen,

und der dritte Parameter ist 0, wenn sich diese

Funktion im Code Segment des aktuellen 

Threads (Ihres Programms) befindet. Der letz-

te Parameter gibt die Prozess ID an, für die der

Hook wirksam sein soll.

Die zweite hier wichtige Message des Message-

Handlers ist WM_DESTROY. In diesem Fall

wird der Hook wieder aus der Filterfunktion-

Kette entfernt:

if ( hHookID )
UnhookWindowsHookEx( hHookID );

Anschließend werfen Sie einen genaueren

Blick auf die Hook-Filterfunktion, deren Kopf

wie folgt definiert ist:

LRESULT CALLBACK HookCallWindowProc
(int nCode, WPARAM wP, LPARAM lP )
{ CWPSTRUCT cwps; LONG handle;
CHAR szClass[ 128 ];

Wenn der nCode- Parameter den Wert HC_AC-

TION enthält, interpretieren Sie den Wert des

lP-Parameters als Zeiger auf eine

CPWSTRUCT. Diese Struktur enthält alle Para-

meter einer Window-Message:

typedef struct tagCWPSTRUCT { 
LPARAM  lParam; WPARAM  wParam; 
UINT message; HWND    hwnd; 

} CWPSTRUCT; 

Also kopieren Sie die Nachricht:

if( nCode == HC_ACTION )
{CopyMemory( &cwps, (void*)lP, 

sizeof( CWPSTRUCT ) );

So analysieren und reagieren Sie anschließend

auf die Nachricht, wenn sie ein Fenster anle-

gen soll:

switch( cwps.message )
{case WM_CREATE:

GetClassName( cwps.hwnd, szClass,127);
if (lstrcmpi( szClass, „#32768“ )==0)

{handle = SetWindowLong(
cwps.hwnd, GWL_WNDPROC, 

(LONG)SubClassWindowProc );
SetProp( cwps.hwnd, 
„OldWindowProcedure“, 
(HANDLE)handle );
}  break;  }

Wenn ein Fenster erzeugt wird, enthält die

Nachrichten-Struktur die WM_CREATE-Messa-

ge. Pull-down-Menüs erkennen Sie daran, dass

der Klassenname #32768 lautet. In diesem Fall

verbiegen Sie den Zeiger des Window-Messa-

ge-Handlers für dieses neue Pull-down-Menü

auf die Funktion SubClassWindowProc(...),

die Sie selbst definieren. Sie speichern die

Adresse des normalen Message-Handler mit

der SetProp(...)-Methode. Die Adresse können

Sie zu jedem Zeitpunkt wieder abfragen, da sie

mit dem HWND des Pull-down-Menüs assozi-

iert ist. Zuletzt rufen Sie noch die nächste

Funktion der Filterkette auf:

return CallNextHookEx( 
(HHOOK)WH_CALLWNDPROC, 

nCode, wParam, lParam );   }

Als nächstes beschäftigen Sie sich mit der neu

installierten Fensterfunktion für die Pull-down-

Menüs Ihrer Applikation. Fenster-Attribute wie

Transparenz können Sie hinzufügen, wenn Sie

die SubClassWindowProc(...) Funktion mit der

WM_CREATE-Message aufrufen. Unser Fall soll

das Aussehen anderweitig modifizieren und

den Hintergrund der Menüs mit einem Farb-

verlauf versehen.

Dazu bearbeiten Sie die WM_PAINT-Nachricht.

Das Prinzip ist folgendermaßen: Wenn eine

WM_PAINT-Nachricht eintrifft, fangen Sie die-

se ab und erzeugen sich zuerst zwei Device

Kontexts und Bitmaps, die die Größe des Me-

nü-Fensters besitzen:

HDC     tempHDC, tempHDC2;
RECT    rect;
HBITMAP bitmap, bitmap2;
GetClientRect( hWnd, &rect );
tempHDC  = CreateCompatibleDC(NULL);
bitmap   = CreateCompatibleBitmap( 
GetDC( GetDesktopWindow() ), 
rect.right, rect.bottom );

tempHDC2 = ...;bitmap2  = ...;
SelectObject( tempHDC,  bitmap  );
SelectObject( tempHDC2, bitmap2 );

In eine Bitmap (bitmap2) zeichnen Sie einen

Farbverlauf, wobei Ihnen z.B. die CreateSolid-

Brush(..)- und FillRect(..)-GDI-Funktionen hel-

fen. Im anderen Bitmap (bitmap) möchten Sie

ein Bild des Originialmenüs darstellen. Dazu

bedienen Sie sich eines Tricks! Es gibt eine

Window-Message (WM_PRINTCLIENT), die

für das Drucken von Fensterinhalten gedacht

ist. Diese zeichnet den Inhalt des Fensters

(oder Pull-down-Menüs) in einen beliebigen

Device-Kontext. Also verwenden Sie diese Me-

thode, um sich vom Original-Message-Handler

das Menü in das Bitmap bzw. den assoziierten

Device-Kontext zeichnen zu lassen:

Quelltexte sowie fertig übersetzte Routinen > CD
Heft Add-ons\Programmier-Listings\PC_Underground

MINI-CDCD

Filterfunktionstypen

Funktion Bedeutung

WH_CALLWNDPROC Window Messages von SendMessage(...) verschickt

WH_CBT System Aktionen für Computer Based Training

WH_DEBUG Verhindert den Aufruf anderer Filter

WH_FOREGROUNDIDLE Wird bei Idle der Vordergrund-Applikation aufgerufen

WH_GETMESSAGE Für Nachrichten von oder für GetMessage(...) und PeekMessage

WH_JOURNALPLAYBACK Wiedergabe von Tastatur- oder Maus-Events

WH_JOURNALRECORD Aufzeichnen von Tastatur- oder Maus-Events

WH_KEYBOARD Bearbeiten, Modifizieren oder Verwerfen von Tastatur-Events

WH_MOUSE Bearbeiten, Modifizieren oder Verwerfen von Maus-Events

WH_MSGFILTER Bearbeiten oder Modifizieren von Nachrichten für Dialog/Message 
Boxes, Scroll Bars oder Menüs von Applikationen

WH_SYSMSGFILTER wie oben nur für das System, nicht für Applikationen

WH_SHELL Aktionen von Top-Level-Fenstern (Erzeugen, Zerstören)

PROGRAMMIERUNG   : PC UNDERGROUND

196



// alter Message Handler
WNDPROC oldWindowProc = (WNDPROC)
GetProp(hWnd,“OldWindowProcedure“);

// Bitmap löschen mit Menuhintergrund
FillRect( tempHDC, &rect, 
(HBRUSH)GetSysColor(COLOR_MENU) );

CallWindowProc( oldWindowProc, hWnd,
WM_PRINTCLIENT, (LPARAM)tempHDC, 
PRF_CLIENT | PRF_CHECKVISIBLE );

Der letzte Parameter enthält Flags, die ange-

ben, dass Sie den Fensterinhalt darstellen und

auf Sichtbarkeit prüfen. Jetzt kopieren Sie die

Bitmap mit dem Menü über die Bitmap mit

dem Farbverlauf. Dabei stanzen Sie die Menü-

Hintergrundfarbe aus, damit Sie nur die Pixel,

die Teile des Menüs enthalten, überschreiben:

TransparentBlt( tempHDC2, rect.left,
rect.top, rect.right - rect.left,
rect.bottom - rect.top, tempHDC,
rect.left, rect.top, rect.right  -
rect.left, rect.bottom - rect.top, 
GetSysColor( COLOR_MENU ) );

Jetzt ist das Menü wie geplant gezeichnet und

Sie können es auf den Bildschirm kopieren:

BitBlt( GetDC( hWnd ), 
rect.left, rect.top, rect.right -
rect.left, rect.bottom - rect.top, 
tempHDC2, 0, 0, SRCCOPY );

Nachdem Sie die Device-Kontexts und Bit-

maps wieder freigegeben haben, müssen Sie

Windows noch mitteilen, dass der Fensterbe-

reich fertig gezeichnet wurde:

ValidateRect( hWnd, &rect );return 0;

Wenn Sie die Funktion mit Rückgabewert 0

verlassen, haben Sie die WM_PAINT-Nachricht

somit abgefangen, d.h. es werden keine weite-

ren Hook-Filterfunktionen oder Message-

Handler aufgerufen.

Genauso, wie Sie mit ValidateRect(..) ange-

ben, dass ein Bereich gezeichnet wurde, müs-

sen Sie dafür sorgen, dass Teile des Menüs, die

neu gezeichnet werden müssen, entsprechend

bearbeitet werden. Dies ist der Fall, wenn ent-

weder ein neues Menüelement mit der Maus

oder Tastatur ausgewählt wird. Die beiden ent-

sprechenden Nachrichten fangen Sie ab und

sorgen dafür, dass das Menü vollständig neu

gezeichnet wird. Allerdings geben Sie die

Nachricht weiter, da die Internas, z.B. welches

Element selektiert wurde, sonst nicht aktuali-

siert werden:

case WM_KEYDOWN:case 0x1e5: 
GetClientRect (hWnd,&rect);
InvalidateRect(hWnd,&rect,false);
return CallWindowProc( ...);

Transparente Fenster

Zuvor haben wir bereits erwähnt, dass Sie Ih-

re Pull-down-Menüs auch transparent gestal-

ten können. Dazu bietet Windows 2000 und

XP entsprechende Funktionalität. Die entspre-

chenden Methoden, um diese Funktionen zu

nutzen, sind in der Bibliothek User32.DLL ent-

halten. Diese müssen Sie, unter Umständen je

nach SDK-Version, selbst definieren und aus

der DLL mit GetProcAdress(..) laden (siehe

Beispielprogramm). Die beiden Funktionen

sind SetLayeredWindowAttributes und Upda-

teLayeredWindow. Mit ersterer können Sie ein

Fenster ganz einfach transparent machen wie

z.B. Pull-down-Menüs:

case WM_CREATE:
SetWindowLong(hWnd,GWL_EXSTYLE, 
GetWindowLong(hWnd,GWL_EXSTYLE)|
WS_EX_LAYERED );

SetLayeredWindowAttributes( hWnd, 
0, 200, LWA_ALPHA ); break;

Mit SetWindowLong(..) fügen Sie dem Fenster

das WS_EX_LAYERED-Attribut hinzu. Dieses

ist Vorraussetzung für transparente Fenster. Mit

dem zweiten Aufruf ist das Fenster schon

transparent! Aufwändiger, aber flexibler, ge-

staltet sich die Verwendung von UpdateLaye-

redWindow. Hiermit können Sie ein Fenster

erzeugen, wobei Sie für jeden Pixel einen an-

deren Transparenzwert angeben können! 

Analog zur WM_CREATE-Message werden an

den Dialog Message Handler WM_INITDIA-

LOG-Nachrichten versendet. Auf diese reagie-

ren Sie, indem Sie das _EX_LAYERED-Attribut

setzen. Jetzt können Sie ein Bitmap erstellen,

das die Farben und die Transparenz enthält. Im

Beispiel erzeugen Sie zuerst Device-Kontexts

und eine Bitmap mit dem Pixelformat des

Desktops:

GetClientRect( hDlg, &rect );
HDC dcScreen = GetDC( NULL );
HDC dcMemory = 
CreateCompatibleDC( dcScreen );

bmp = CreateCompatibleBitmap( 
GetDC( GetDesktopWindow() ), 
rect.right, rect.bottom );

Anschließend erzeugen oder laden Sie ein 32-

Bit-Image (mit Alpha Kanal) in den Speicher.

Dazu verwenden Sie einen Speicherbereich

und einen BITMAPINFOHEADER, der das inter-

ne Bild- und Pixelformat beschreibt. Dieses

Bild kopieren Sie dann in den Device-Context

dcMemory, wobei der Wert 256 exemplarisch

als Größe des Bitmaps dient:

DWORD image[ 256 * 256 ];
BITMAPINFO   *bitmapinfo = ?;
SetDIBitsToDevice( ...);

Jetzt können Sie die Attribute des Fensters mit

UpdateLayeredWindow setzen, wobei Sie bit-

te weitere Ausführungen im Web beachten:

http://msdn.microsoft.com/library/en-us/gdi/bit-
maps_3b3m.asp.

Zu den Attributen zählt auch die Position und

Größe des Fensters, der Ursprung der Bitmap

(srcPointer) und natürlich die Beschreibung,

wie die Farb- und Transparenzwerte zu verar-

beiten sind:

BLENDFUNCTION blendPixelFunction =
{AC_SRC_OVER,0,255,AC_SRC_ALPHA};

Dabei bedeutet AC_SRC_ALPHA, dass das Bild

Alpha-Werte besitzt. Beachten Sie dabei, dass

die API mit premultiplied alpha arbeitet, d.h.

die Farbwerte multiplizieren Sie vorab mit dem

Alpha-Wert. Dabei interpretieren Sie Alpha-

Werte zwischen 0 und 255 als Zahlen zwi-

schen 0 und 1. AC_SRC_OVER ist die momen-

tan einzig unterstützte Blending Operation, die

das Quellbild (das Fenster) über das Zielbild

(Hintergrund) legt. Legen Sie also die restli-

chen Attribute fest und rufen Sie die Funktion

UpdateLayeredWindow auf. : et

PROGRAMMIERUNG   : PC UNDERGROUND

198

PC
 M

ag
az

in
 4

/2
00

4 
 : 

 w
w

w
.p

c-
m

ag
az

in
.d

e

Kontext-Menüs: Die WH_CALLWNDPROC-
Hooks greifen auch hier ein.

Info:
www.dachsbacher.de/pcu
http://msdn.microsoft.com

Der etwas andere
About Dialog: Per
Pixel-Transparenz
erstaunen den Anwen-
der plakative Effekte
mit Layered Windows.


