PC Magazin 6/2004 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

GDI+, das neue Subsystem von
Windows XP, vereinfacht und
beschleunigt die
Programmierung von
Bildschirm- und
Druckerausgaben. Im Artikel
lesen Sie, wie Sie GDI+ in
eigenen Applikationen mit
Gewinn einzusetzen.

Carsten Dachsbacher

Platiorm SDR

| }l !

Das GDI+-Subsystem

Schnell zur
chonschrift

Das Window-GDI+-Subsystem von

Windows XP und Windows Server 2003
ist fiir die Darstellung bzw. Ausgabe auf dem
Bildschirm und Druckern verantwortlich. Sie
greifen hierbei auf die Nachfolge API zu GDI
(Windows Graphics Device Interface) {iber
C+ +-Klassen zu, die bereits in alteren Win-
dows-Versionen zur Verfiigung standen.
Zwecks Abwiértskompatibilitat unterstiitzen
Windows XP/Server 2003 auch das bisherige
GDI Interface, doch GDI+ kénnen Sie leichter

GDI+: Unser Beispielprogramm stellt eine Dia-
logbox mit einer Animation dar, die Sie mit
wenigen Zeilen programmieren.

und schneller fiir neue Applikationen verwen-
den. Die Dienste von GDI+ lassen sich in drei
grof3e Bereiche unterteilen.

« Der erste Punkt ist 2D-Vektor-Grafik. Damit ist
das Zeichnen von Primitiven, wie Linien, Kur-
ven etc., gemeint, die durch eine Menge von
Punkten in einem Koordinatensystem definiert
sind, z.B. wird eine Linie durch Start- und End-
punkt definiert. GDI+ stellt Klassen zur Verfii-
gung, die die Information iber die Primitive
selbst enthalten, Klassen, die speichern, wie
die Primitive gezeichnet werden sollen, und
Klassen, die das Zeichnen an sich iiberneh-
men. So zeichnen Sie z.B. ein Rechteck mit der
Rect-Klasse, speichern Dimension und Positi-
on per Pen-Klasse und Sie legen Linienfarbe,
-dicke und -stil per Graphics-Klasse fest.

« Bildbearbeitung ist der zweite Aufgabenbe-
reich, der durch GDI+ abgedeckt wird. Darun-
ter fallt die Verwaltung und das Zeichnen von
Bitmaps, wofiir eine Reihe von Klassen und
Methoden zur Verfiigung stehen. Aulerdem
wird die Funktionalitdt zum Laden und Spei-
chern von Bitmaps in verschiedenen Forma-
ten, wie z.B. JPG, PNG, BMP, bereitgestellt.

« Der dritte und letzte Bereich ist die Typogra-
phie, also die Darstellung von Text mit
verschiedenen Schriftarten, -groffen und At-
tributen. Hierzu z&hlt z.B. auch die Textdar-
stellung mit Subpixel-Antialiasing fiir TFT-
Bildschirme.

Quelltexte sowie fertig iibersetzte Routinen > CD
Praxis/Programmierung/PC Underground

Die Klassenstruktur

Das C+ +-Interface von GDI+ besteht aus etwa
40 Klassen, zahlreichen Enumerations und we-
nigen Structures. Weiterhin gibt es noch eine
Kkleine Zahl von Funktionen, die nicht Member
einer Klasse sind. Die Klasse Graphics ist gleich-
sam der Kernpunkt des GDI+-Interface: Hier fin-
den Sie die Methoden, die Linien, Kurven, Bilder
und Text zeichnen. Wie bereits erwéhnt, ist die
Graphics Klasse auf die Informationen aus ande-
ren Klassen angewiesen, um z.B. Linien mit ei-
ner bestimmten Farbe (Pen) zu zeichnen. Es gibt
Klassen, die primar als Datencontainer dienen,
wie z.B. die Rect-, Point- und Size-Klasse, und fiir
verschiedene Zwecke eingesetzt werden. Ande-
re sind spezielle Hilfsklassen, wie z.B. die Bit-
mapData-Klasse, die Bildattribute und -daten fiir
die Bitmap-Klasse speichert, die wiederum Me-
thoden zur Bildmanipulation bereitstellt.

Zu GDI+ gehoren aber auch einige Funktio-
nen, die nicht Bestandteil einer Klasse sind. Die
beiden wichtigsten Funktionen sind Gdiplus-
Startup, die Sie vor einem anderen GDI+-Be-
fehl aufrufen miissen, und GdiplusShutdown,
die Sie verwenden, wenn Sie alle GDI+-Aufru-
fe abgeschlossen haben.

GDI+ Step by Step

Schrittweise demonstrieren wir [hnen die Ver-
wendung der wichtigsten GDI+-Funktionen
anhand eines einfachen Beispiels. Unser Bei-
spielprogramm 0ffnet eine modale Dialogbox,
deren Window Procedure beim Empfang ei-
ner WM_PAINT Nachricht unsere GDI+-Kom-
mandos abarbeitet, um eine einfache Anima-
tion darzustellen.

Mit einem Timer — gesetzt beim Empfang der
WM_INITDIALOG Nachricht — wird das Neu-
zeichnen des Dialoginhalts regelméfdig mit /n-
validateRect(...) erzwungen. Beim Start des
Programms initialisieren Sie zundchst GDI+
und erzeugen die Dialogbox:

GdiplusStartupInput gdipStartupInput;

Das zuriickgelieferte gdiplusToken iibergeben
Sie bei Programmende wieder:

GdiplusShutdown(gdiplusToken);

Widmen Sie sich also nun der WM_PAINT-Be-
handlung. Um auf einen Device Kontext zu
zeichnen, miissen Sie dazu ein Graphics Ob-
jekt erzeugen. Dieses Objekt speichert alle At-
tribute fiir ein Device und die Attribute der Pri-
mitive, die Sie zeichnen:

Graphics graphics(hdc);

Da Sie, um Flackern zu vermeiden, nicht direkt
in den Dialog zeichnen wollen, legen Sie ein

Bitmap mit der richtigen Gr6f3e an und ver-
wenden dieses spater zum Zeichnen — dazu
bendtigen Sie ein Graphics Objekt, das mit
dem Bitmap assoziiert ist:

RECT rect;.....

Zum Einstieg zeichnen Sie eine Linie in das Bit-
map. Dazu benétigen Sie einen Pen, der Farbe
und Strichstarke der Linie speichert. Anschlie-
3end konnen Sie mit der Graphics::DrawLine-
Methode die Linie von (0,0) nach (77,44)
zeichnen:

Pen p(Color(alpha,red,green,blue));
graph->DrawLine(&pen, 0, 0, 77, 44);
Um das Ergebnis zu sehen, miissen Sie das
Bitmap noch auf den Device Context der Dia-
logbox kopieren.

Um ein Bitmap auf ein Graphics Objekt zu
zeichnen (und um nichts anderes handelt es
sich hier), verwenden Sie folgenden Aufruf,
wobei das Rectangle den zu zeichnenden Be-

reich angibt:
graphics.DrawImage(&bmp, rect);

AbschlieBend deklarieren Sie den Client-Be-
reich der Dialogbox, d.h. die Region des Bild-

CD 1 MINI-CD

schirms, die Sie aufgrund der WM _PAINT-
Nachricht aktualisieren sollten:

ValidateRect(hDlg, &rect);

Das Beispielprogramm setzt noch weitere Gra-
fikfunktionen ein: Wie Sie vielleicht bemerkt
haben, haben wir den Hintergrund des Bit-
maps gar nicht geloscht. Der Inhalt ist also un-
definiert. Zum Loschen des Bildhintergrundes
zeichnen Sie ein Rechteck in der gewiinschten
Farbe. Um Flachen einzufarben, verwenden
Sie keinen Pen, sondern einen so genannten
Brush. Ein Brush ist ein Fillmuster, das eine
einzelne Farbe, einen Farbverlauf oder eine
Textur enthalten kann.

Um den Hintergrund einfarbig zu kolorieren,
legen Sie einen SolidBrush an und rufen damit
die FillRectangle Methode des Graphics Objek-
tes auf:

SolidBrush brush(Color(255,0,0,0));
graph->FillRectangle(&brush, rect);

Wenn Sie den Hintergrund mit einem Farbver-
lauf fiillen mochten, ist das fiir GDI+ kein Pro-
blem. Sie tauschen lediglich den Brush aus
und verwenden statt einem SolidBrush einen
LinearGradientBrush. Das folgende Beispiel

Installation des Platform SDK und der Redistributables

nen: www.microsoft.com/downloads/.

Um das Beispielprogramm zu kompilieren, benétigen Sie die GDI+-Headerdateien und
Libraries. Diese sind Bestandteil des Microsoft SDK (Platform SDK). Sie finden online
eine Anleitung zur Installation: www.microsoft.com/msdownload/platformsdk/sdkupdate.

Auf der Webseite finden Sie mehrere SDKs zur Auswahl. GDI+ ist Teil des Core SDK,
das Sie auf Inrem Rechner installieren kdnnen, indem Sie den Instruktionen folgen. An-
schlieBend miissen Sie nur noch die Include und Library Pfade |lhres C++-Compilers
anpassen. Bei Visual C++ 6.0 finden Sie diese Einstellungen unter Tools/Optionen, bei
Visual Studio .NET unter Extras/Optionen im Unterpunkt Projects/V/C++ Verzeichnisse.
Wenn Sie in einer Ihrer Applikationen GDI+ verwenden und diese auf einem alteren
System wie Windows 2000 laufen lassen wollen, missen Sie die notwendigen DLLs
mit Ihrem Programm mitliefern. Die dazu notwendigen Dateien sind im Platform SDK
Redistributable: GDI+ RTM Paket enthalten, das Sie unter folgender URL finden kon-

Install this SOEI

Ly LastUpdated
¥ Fabeuary 2003

Platform SDK: Mit
der Online Installa-
tion erhalten Sie
Headerdateien und
Bibliotheken, um
GDI+-Applikationen
zu entwickeln.

201

@
=
£
N
©
=
©
g
o
<
=
s
=
<
=)
<]
I
S
S
£
N
©
1=
©
=
©
o

PC Magazin 6/2004 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

(Quellcode Heft-CD) erzeugt einen Farbverlauf
von halb-transparentem Gelb zu opakem Blau,
der diagonal (45 Grad Rotation) verlauft:

LinearGradientBrush ...

Die dritte hier vorgestellte Variante ist der Textu-
reBrush. Dem Konstruktor dieser Klasse tiber-
geben Sie ein Image Objekt. Ein Image Objekt
stellt Methoden zur Verfligung, um Bitmaps und
Vektorgrafik zu laden und zu speichern. Die
Bilddaten werden dabei im Objekt gehalten
und mit einer Reihe von Methoden kénnen Sie
auf Attribute zugreifen. Die Image Klasse kann
auch Bilddateien verschiedenster Formate wie
BMR, ICON, GIF, JPEG, PNG, TIFF lesen. Dazu
verwenden Sie diese Klasse auch, wenn Sie wie
im Beispiel einen TextureBrush anlegen. Laden
Sie damit eine Bilddatei und tibergeben Sie das
Image dem Brush-Konstruktor:

Image image(L“./data/image.jpg“);

Der Wert des zweiten Parameters des Kon-
struktor (Quellcode auf der Heft-CD) gibt an,
dass das Bild beim Fiillen einer Flache geka-
chelt wird, wobei verschiedene Optionen ein
abwechselungsreiches Bild ergeben.

Sowohl der LinearGradientBrush als auch der
TextureBrush bieten Transformationen an,

Neue Fahigkeiten: GradientBrush mit Farbver-
lauf und Cardinal Splines mit GraphicsPath

d.h. der Brush kann verschoben, skaliert oder
rotiert werden. Dazu speichern diese Klassen
intern eine Transformationsmatrix, die Sie di-
rekt angeben oder modifizieren konnen. Die
Matrix definiert eine affine Abbildung, spei-
chert diese aber in einer 3x3-Matrix, von der
die dritte Zeile immer die Werte (0,0,1) ent-
halt. Mit der Methode ResetTransform setzen
Sie die Abbildung zuriick. Anschlieend kon-
nen Sie z.B. die RotateTransform(30.0f, Ma-
trixOrderPrepend), eine Rotationsabbildung,
erzeugen und mit der bereits gespeicherten
verkniipfen. Der zweite Parameter gibt an,
dass die Multiplikation der Rotationsmatrix
links an die bereits gespeicherten stattfindet.
Beachten Sie, dass die Matrixmultiplikation
nicht kommutativ ist und dass sich Abbildun-
gen anschaulich von rechts nach links aufbau-
en. Um die Matrix am rechten Rand zu multi-
plizieren, verwenden Sie den Parameter Ma-
trixOrderAppend.

Die letzte hier vorgestellte Funktionalitét des
Graphics Objektes ist die Textausgabe. Als ers-
tes benotigen Sie ein FontFamily Objekt, das ei-
ne Gruppe von Schriftarten mit demselbem
Aussehen aber unterschiedlichem Stil repré-
sentiert:

FontFamily fontFamily(L“Arial®);

Jetzt benoétigen Sie noch ein Font Objekt, das
die Familie wie Schriftgrof8e, Art und Stil bein-
haltet, um den Text auszugeben. So erhalten
Sie einen Arial-Font der Grof3e 35 in kursiver
Fettschrift:

Font font(&fontFamily, 35,
FontStyleItalic | FontStyleBold,
UnitPixel);

Schlieflich speichern Sie noch die Position in
einer PointF Klasse und geben per Graphics
Objekt den Text aus:

PointF position(5.0f, 55.0f);...

TextureBrush: Diese

Beispieltextur ver-

\ wendet Brush mit
WrapMode Optionen.

Speichern mit der Image Klasse

Wie erwéahnt, laden und speichern Sie per
Image Bilddateien in verschiedensten Forma-
ten. Als erstes legen Sie ein IStrearm Objekt an,
welches Sie in den Bibliotheken des Platform
SDK finden (Kasten), um Daten im Hauptspei-
cher ablegen und auslesen zu kénnen.

IStream *stream;...

Als néchstes wahlen Sie den Encoder mit einer
Hilfsfunktion aus der MSDN Library, um des-
sen entsprechende Class ID auszulesen:

CLSID jpegClsid;....

Diese — im Source Code in der MSDN Library
enthaltene — Funktion enumeriert alle instal-
lierten Encoder und sucht anhand des tiberge-
benen Bezeichner-Strings die entsprechende
Class ID heraus. Diese ibergeben Sie spater
an die Bitmap oder Image Klasse fiir das En-
coding des Bildes. Nachdem Sie die Class ID
bekommen haben, legen Sie noch die Kom-
pressionsparameter fiir das JPEG-Encoding
fest. Diese speichern Sie in der EncoderPara-
meters Klasse (ein Container fiir EncodePara-
meter Objekte). Jeder Eintrag besteht aus ei-
nem Identifier (z.B. EncoderQuality), dem Typ
der Variablen (EncoderParameterValueType-
Long), Anzahl der Werte und der Adresse des
Wertes:

EncoderParameters enc;....

Damit kdnnen Sie das Bitmap bereits kodieren
lassen und die resultierenden Daten in den
Stream schreiben:

graph->Save(stream,
&jpegClsid, &encoderParameters);

Per Seek-Kommando erfragen Sie die Grofle
der Bilddatei, die sich im Speicher des Streams
befindet:

ULARGE_INTEGER compressedSize;....

Eine Methode, die Daten zu speichern, ist,
Speicher auerhalb dieses Streams zu allokie-
ren, die Daten dort hin zu kopieren und mit
beliebigen Dateifunktionen zu schreiben:

FILE *f = fopen(,bild.jpg“, ,wb“);..

Mit den GDI+-Funktionen der Image Klasse
konnen Sie somit auch sehr einfach Bildforma-
te konvertieren, indem Sie Bilddateien laden
und mit der gerade vorgestellten Methode in
einem anderen Format speichern. Oder Sie
verwenden den obigen Code, um Fensterin-
halte als Bilddateien abzulegen. cet

