
Das Window-GDI+-Subsystem von

Windows XP und Windows Server 2003

ist für die Darstellung bzw. Ausgabe auf dem

Bildschirm und Druckern verantwortlich. Sie

greifen hierbei auf die Nachfolge API zu GDI

(Windows Graphics Device Interface) über

C++-Klassen zu, die bereits in älteren Win-

dows-Versionen zur Verfügung standen.

Zwecks Abwärtskompatibilität unterstützen

Windows XP/Server 2003 auch das bisherige

GDI Interface, doch GDI+ können Sie leichter

und schneller für neue Applikationen verwen-

den. Die Dienste von GDI+ lassen sich in drei

große Bereiche unterteilen. 

● Der erste Punkt ist 2D-Vektor-Grafik. Damit ist

das Zeichnen von Primitiven, wie Linien, Kur-

ven etc., gemeint, die durch eine Menge von

Punkten in einem Koordinatensystem definiert

sind, z.B. wird eine Linie durch Start- und End-

punkt definiert. GDI+ stellt Klassen zur Verfü-

gung, die die Information über die Primitive

selbst enthalten, Klassen, die speichern, wie

die Primitive gezeichnet werden sollen, und

Klassen, die das Zeichnen an sich überneh-

men. So zeichnen Sie z.B. ein Rechteck mit der

Rect-Klasse, speichern Dimension und Positi-

on per Pen-Klasse und Sie legen Linienfarbe, 

-dicke und -stil per Graphics-Klasse fest.

● Bildbearbeitung ist der zweite Aufgabenbe-

reich, der durch GDI+ abgedeckt wird. Darun-

ter fällt die Verwaltung und das Zeichnen von

Bitmaps, wofür eine Reihe von Klassen und

Methoden zur Verfügung stehen. Außerdem

wird die Funktionalität zum Laden und Spei-

chern von Bitmaps in verschiedenen Forma-

ten, wie z.B. JPG, PNG, BMP, bereitgestellt.

● Der dritte und letzte Bereich ist die Typogra-

phie, also die Darstellung von Text mit 

verschiedenen Schriftarten, -größen und At-

tributen. Hierzu zählt z.B. auch die Textdar-

stellung mit Subpixel-Antialiasing für TFT-

Bildschirme.

PROGRAMMIERUNG   : PC UNDERGROUND

200

PC
 M

ag
az

in
 6

/2
00

4 
 : 

 w
w

w
.p

c-
m

ag
az

in
.d

e

GDI+, das neue Subsystem von

Windows XP, vereinfacht und

beschleunigt die 

Programmierung von 

Bildschirm- und 

Druckerausgaben. Im Artikel

lesen Sie, wie Sie GDI+ in

eigenen Applikationen mit

Gewinn einzusetzen.

Carsten Dachsbacher

Das GDI+-Subsystem

Schnell zur
Schönschriftw

or
ks

ho
p

GDI+: Unser Beispielprogramm stellt eine Dia-
logbox mit einer Animation dar, die Sie mit
wenigen Zeilen programmieren.



Die Klassenstruktur

Das C++-Interface von GDI+ besteht aus etwa

40 Klassen, zahlreichen Enumerations und we-

nigen Structures. Weiterhin gibt es noch eine

kleine Zahl von Funktionen, die nicht Member

einer Klasse sind. Die Klasse Graphics ist gleich-

sam der Kernpunkt des GDI+-Interface: Hier fin-

den Sie die Methoden, die Linien, Kurven, Bilder

und Text zeichnen. Wie bereits erwähnt, ist die

Graphics Klasse auf die Informationen aus ande-

ren Klassen angewiesen, um z.B. Linien mit ei-

ner bestimmten Farbe (Pen) zu zeichnen. Es gibt

Klassen, die primär als Datencontainer dienen,

wie z.B. die Rect-, Point- und Size-Klasse, und für

verschiedene Zwecke eingesetzt werden. Ande-

re sind spezielle Hilfsklassen, wie z.B. die Bit-

mapData-Klasse, die Bildattribute und -daten für

die Bitmap-Klasse speichert, die wiederum Me-

thoden zur Bildmanipulation bereitstellt.

Zu GDI+ gehören aber auch einige Funktio-

nen, die nicht Bestandteil einer Klasse sind. Die

beiden wichtigsten Funktionen sind Gdiplus-

Startup, die Sie vor einem anderen GDI+-Be-

fehl aufrufen müssen, und GdiplusShutdown,

die Sie verwenden, wenn Sie alle GDI+-Aufru-

fe abgeschlossen haben.

GDI+ Step by Step

Schrittweise demonstrieren wir Ihnen die Ver-

wendung der wichtigsten GDI+-Funktionen

anhand eines einfachen Beispiels. Unser Bei-

spielprogramm öffnet eine modale Dialogbox,

deren Window Procedure beim Empfang ei-

ner WM_PAINT Nachricht unsere GDI+-Kom-

mandos abarbeitet, um eine einfache Anima-

tion darzustellen. 

Mit einem Timer – gesetzt beim Empfang der

WM_INITDIALOG Nachricht – wird das Neu-

zeichnen des Dialoginhalts regelmäßig mit In-

validateRect(...) erzwungen. Beim Start des

Programms initialisieren Sie zunächst GDI+

und erzeugen die Dialogbox:

GdiplusStartupInput gdipStartupInput;

Das zurückgelieferte gdiplusToken übergeben

Sie bei Programmende wieder:

GdiplusShutdown( gdiplusToken );

Widmen Sie sich also nun der WM_PAINT-Be-

handlung. Um auf einen Device Kontext zu

zeichnen, müssen Sie dazu ein Graphics Ob-

jekt erzeugen. Dieses Objekt speichert alle At-

tribute für ein Device und die Attribute der Pri-

mitive, die Sie zeichnen:

Graphics graphics( hdc );

Da Sie, um Flackern zu vermeiden, nicht direkt

in den Dialog zeichnen wollen, legen Sie ein

Bitmap mit der richtigen Größe an und ver-

wenden dieses später zum Zeichnen – dazu

benötigen Sie ein Graphics Objekt, das mit

dem Bitmap assoziiert ist:

RECT rect;.....

Zum Einstieg zeichnen Sie eine Linie in das Bit-

map. Dazu benötigen Sie einen Pen, der Farbe

und Strichstärke der Linie speichert. Anschlie-

ßend können Sie mit der Graphics::DrawLine-

Methode die Linie von (0,0) nach (77,44)

zeichnen:

Pen p(Color(alpha,red,green,blue));
graph->DrawLine( &pen, 0, 0, 77, 44 );

Um das Ergebnis zu sehen, müssen Sie das

Bitmap noch auf den Device Context der Dia-

logbox kopieren. 

Um ein Bitmap auf ein Graphics Objekt zu

zeichnen (und um nichts anderes handelt es

sich hier), verwenden Sie folgenden Aufruf,

wobei das Rectangle den zu zeichnenden Be-

reich angibt:

graphics.DrawImage( &bmp, rect );

Abschließend deklarieren Sie den Client-Be-

reich der Dialogbox, d.h. die Region des Bild-

schirms, die Sie aufgrund der WM_PAINT-

Nachricht aktualisieren sollten:

ValidateRect( hDlg, &rect );

Das Beispielprogramm setzt noch weitere Gra-

fikfunktionen ein: Wie Sie vielleicht bemerkt

haben, haben wir den Hintergrund des Bit-

maps gar nicht gelöscht. Der Inhalt ist also un-

definiert. Zum Löschen des Bildhintergrundes

zeichnen Sie ein Rechteck in der gewünschten

Farbe. Um Flächen einzufärben, verwenden

Sie keinen Pen, sondern einen so genannten

Brush. Ein Brush ist ein Füllmuster, das eine

einzelne Farbe, einen Farbverlauf oder eine

Textur enthalten kann.

Um den Hintergrund einfarbig zu kolorieren,

legen Sie einen SolidBrush an und rufen damit

die FillRectangle Methode des Graphics Objek-

tes auf:

SolidBrush brush( Color(255,0,0,0) );
graph->FillRectangle( &brush, rect );

Wenn Sie den Hintergrund mit einem Farbver-

lauf füllen möchten, ist das für GDI+ kein Pro-

blem. Sie tauschen lediglich den Brush aus

und verwenden statt einem SolidBrush einen

LinearGradientBrush. Das folgende Beispiel

201

PC
 M

ag
az

in
 6

/2
00

4 
 : 

 w
w

w
.p

c-
m

ag
az

in
.d

e

Quelltexte sowie fertig übersetzte Routinen > CD
Praxis/Programmierung/PC Underground

MINI-CDCD 1

Installation des Platform SDK und der Redistributables

Um das Beispielprogramm zu kompilieren, benötigen Sie die GDI+-Headerdateien und
Libraries. Diese sind Bestandteil des Microsoft SDK (Platform SDK). Sie finden online
eine Anleitung zur Installation: www.microsoft.com/msdownload/platformsdk/sdkupdate.
Auf der Webseite finden Sie mehrere SDKs zur Auswahl. GDI+ ist Teil des Core SDK,
das Sie auf Ihrem Rechner installieren können, indem Sie den Instruktionen folgen. An-
schließend müssen Sie nur noch die Include und Library Pfade Ihres C++-Compilers
anpassen. Bei Visual C++ 6.0 finden Sie diese Einstellungen unter Tools/Optionen, bei
Visual Studio .NET unter Extras/Optionen im Unterpunkt Projects/VC++ Verzeichnisse.
Wenn Sie in einer Ihrer Applikationen GDI+ verwenden und diese auf einem älteren
System wie Windows 2000 laufen lassen wollen, müssen Sie die notwendigen DLLs
mit Ihrem Programm mitliefern. Die dazu notwendigen Dateien sind im Platform SDK
Redistributable: GDI+ RTM Paket enthalten, das Sie unter folgender URL finden kön-
nen: www.microsoft.com/downloads/.

Platform SDK: Mit
der Online Installa-
tion erhalten Sie
Headerdateien und
Bibliotheken, um
GDI+-Applikationen
zu entwickeln.



(Quellcode Heft-CD) erzeugt einen Farbverlauf

von halb-transparentem Gelb zu opakem Blau,

der diagonal (45 Grad Rotation) verläuft:

LinearGradientBrush ...

Die dritte hier vorgestellte Variante ist der Textu-

reBrush. Dem Konstruktor dieser Klasse über-

geben Sie ein Image Objekt. Ein Image Objekt

stellt Methoden zur Verfügung, um Bitmaps und

Vektorgrafik zu laden und zu speichern. Die

Bilddaten werden dabei im Objekt gehalten

und mit einer Reihe von Methoden können Sie

auf Attribute zugreifen. Die Image Klasse kann

auch Bilddateien verschiedenster Formate wie

BMP, ICON, GIF, JPEG, PNG, TIFF lesen. Dazu

verwenden Sie diese Klasse auch, wenn Sie wie

im Beispiel einen TextureBrush anlegen. Laden

Sie damit eine Bilddatei und übergeben Sie das

Image dem Brush-Konstruktor:

Image image( L“./data/image.jpg“ );

Der Wert des zweiten Parameters des Kon-

struktor (Quellcode auf der Heft-CD) gibt an,

dass das Bild beim Füllen einer Fläche geka-

chelt wird, wobei verschiedene Optionen ein

abwechselungsreiches Bild ergeben.

Sowohl der LinearGradientBrush als auch der

TextureBrush bieten Transformationen an,

d.h. der Brush kann verschoben, skaliert oder

rotiert werden. Dazu speichern diese Klassen

intern eine Transformationsmatrix, die Sie di-

rekt angeben oder modifizieren können. Die

Matrix definiert eine affine Abbildung, spei-

chert diese aber in einer 3x3-Matrix, von der

die dritte Zeile immer die Werte (0,0,1) ent-

hält. Mit der Methode ResetTransform setzen

Sie die Abbildung zurück. Anschließend kön-

nen Sie z.B. die RotateTransform( 30.0f, Ma-

trixOrderPrepend), eine Rotationsabbildung,

erzeugen und mit der bereits gespeicherten

verknüpfen. Der zweite Parameter gibt an,

dass die Multiplikation der Rotationsmatrix

links an die bereits gespeicherten stattfindet.

Beachten Sie, dass die Matrixmultiplikation

nicht kommutativ ist und dass sich Abbildun-

gen anschaulich von rechts nach links aufbau-

en. Um die Matrix am rechten Rand zu multi-

plizieren, verwenden Sie den Parameter Ma-

trixOrderAppend.

Die letzte hier vorgestellte Funktionalität des

Graphics Objektes ist die Textausgabe. Als ers-

tes benötigen Sie ein FontFamily Objekt, das ei-

ne Gruppe von Schriftarten mit demselbem

Aussehen aber unterschiedlichem Stil reprä-

sentiert:

FontFamily fontFamily( L“Arial“ );

Jetzt benötigen Sie noch ein Font Objekt, das

die Familie wie Schriftgröße, Art und Stil bein-

haltet, um den Text auszugeben. So erhalten

Sie einen Arial-Font der Größe 35 in kursiver

Fettschrift:

Font font( &fontFamily, 35, 
FontStyleItalic | FontStyleBold, 
UnitPixel );

Schließlich speichern Sie noch die Position in

einer PointF Klasse und geben per Graphics

Objekt den Text aus:

PointF position( 5.0f, 55.0f );...

Speichern mit der Image Klasse

Wie erwähnt, laden und speichern Sie per

Image Bilddateien in verschiedensten Forma-

ten. Als erstes legen Sie ein IStream Objekt an,

welches Sie in den Bibliotheken des Platform

SDK finden (Kasten), um Daten im Hauptspei-

cher ablegen und auslesen zu können.

IStream *stream;...

Als nächstes wählen Sie den Encoder mit einer

Hilfsfunktion aus der MSDN Library, um des-

sen entsprechende Class ID auszulesen:

CLSID jpegClsid;....

Diese – im Source Code in der MSDN Library

enthaltene – Funktion enumeriert alle instal-

lierten Encoder und sucht anhand des überge-

benen Bezeichner-Strings die entsprechende

Class ID heraus. Diese übergeben Sie später

an die Bitmap oder Image Klasse für das En-

coding des Bildes. Nachdem Sie die Class ID

bekommen haben, legen Sie noch die Kom-

pressionsparameter für das JPEG-Encoding

fest. Diese speichern Sie in der EncoderPara-

meters Klasse (ein Container für EncodePara-

meter Objekte). Jeder Eintrag besteht aus ei-

nem Identifier (z.B. EncoderQuality), dem Typ

der Variablen (EncoderParameterValueType-

Long), Anzahl der Werte und der Adresse des

Wertes:

EncoderParameters enc;....

Damit können Sie das Bitmap bereits kodieren

lassen und die resultierenden Daten in den

Stream schreiben:

graph->Save( stream, 
&jpegClsid, &encoderParameters );

Per Seek-Kommando erfragen Sie die Größe

der Bilddatei, die sich im Speicher des Streams

befindet:

ULARGE_INTEGER compressedSize;....

Eine Methode, die Daten zu speichern, ist,

Speicher außerhalb dieses Streams zu allokie-

ren, die Daten dort hin zu kopieren und mit

beliebigen Dateifunktionen zu schreiben:

FILE *f = fopen( „bild.jpg“, „wb“ );..

Mit den GDI+-Funktionen der Image Klasse

können Sie somit auch sehr einfach Bildforma-

te konvertieren, indem Sie Bilddateien laden

und mit der gerade vorgestellten Methode in

einem anderen Format speichern. Oder Sie

verwenden den obigen Code, um Fensterin-

halte als Bilddateien abzulegen. : et

PROGRAMMIERUNG   : PC UNDERGROUND

202

PC
 M

ag
az

in
 6

/2
00

4 
 : 

 w
w

w
.p

c-
m

ag
az

in
.d

e

Neue Fähigkeiten: GradientBrush mit Farbver-
lauf und Cardinal Splines mit GraphicsPath

TextureBrush: Diese
Beispieltextur ver-
wendet Brush mit
WrapMode Optionen.


