
Das Deferred Shading konstruiert die

Geometrie einer 3D-Szene zunächst oh-

ne Beleuchtungsberechnung. Dabei zeichnen

Sie nicht in den normalen sichtbaren Frame-

buffer, sondern in so genannte Fat-Buffers.

Der Name kommt daher, dass diese Buffer,

verteilt auf mehrere gleichzeitig beschreibba-

re Rendertargets, verhältnismäßig viel Daten

pro Pixel enthalten, wie z.B. die 3D-Position

und die Normale der – in diesem Pixel –

sichtbaren Oberfläche. Nach dem Zeichnen

der Szene wird die Beleuchtungsberechnung

für jeden Pixel durchgeführt: die dafür

notwendige Information befindet sich in den

Fat-Buffers. Für diese Technik benötigen Sie

natürlich modernere, programmierbare

Grafikkarten der DirectX9-Generation, um

zum Einen die Rendertargets (dynamische

Texturen) zu beschreiben und zum Anderen

die Beleuchtungsberechnung in einem Pixel-

Shader zu programmieren.

Vergleich

Unter den vielen Varianten Lighting/Shading

für das Echtzeit-Rendering, greifen wir an

dieser Stelle drei Varianten heraus, die mit

dynamischen Lichtquellen und lokaler

Beleuchtungsberechnung arbeiten. Das

Single-Pass-Verfahren berechnet das Lighting

direkt beim Rendern der Geometrie. Dieser

Ansatz ist gut geeignet, um Szenen mit weni-

gen Lichtquellen darzustellen. Bei einer

großen Anzahl von Lichtquellen wird die

Organisation der Shader und der Lichtquel-

len, die für ein Objekt relevant sind, schwie-

rig und der Vertex/Pixel Shader leicht zu kom-

plex. Beim Multi Pass Lighting wird jeweils

nur eine Lichtquelle auf ein Objekt angewen-

det und dieses gegebenenfalls mehrfach ge-

zeichnet und in den Framebuffer geblendet.

Das Problem hierbei ist der entstehende Auf-

wand bei der Verwaltung und dem Rendering

von Lichtquellen und Objekten.

Beim Deferred Shading müssen Sie sich um

die Zahl der endgültig angewendeten Licht-

quellen beim Zeichnen der Objekte keine

Gedanken machen. Für die Performance ist es

auch nahezu egal, ob Sie viele klein- oder

wenige großflächige Lichtquellen in Ihrer

Szene verwenden.

PROGRAMMIERUNG : PC UNDERGROUND

182

PC
 M

ag
az

in
 8

/2
00

4
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Mit Deferred-shading-

Techniken zeichnen Sie Ihre

3D-Szenen zunächst völlig

ohne Beleuchtungsberechnung.

Diese übernimmt einmalig ein

finaler Nachbearbeitungsschritt

für jeden sichtbaren Pixel.

Carsten Dachsbacher

Deferred Shading – Beleuchtung als Post Processing

Schattenspielw
or

ks
ho

p

Deferred Shading: Sie berechnen die
Beleuchtung nur einmal pro Pixel.

Multiple Render Targets

In den Rendertargets, also dem Ergebnis des

Geometrie-Renderings, benötigen Sie neben

der 3D-Position jedes Pixels und seiner Norma-

le noch Materialparameter. Diese können je

nach verwendetem Beleuchtungsmodell vari-

ieren. Typischerweise umfassen die Parameter

die diffuse Oberflächenfarbe, spekulare Reflek-

tion und eventuell auch Parameter für Licht-

emission und Subsurface-Scattering.

Prinzipiell sollten Sie die Datenmenge aber so

gering wie möglich halten, wie das folgende

Beispiel zeigt. Nehmen Sie an, Sie speichern

die Position in einem A32R32G32B32 Render-

target (32 Bit IEEE Float für alle vier Kompo-

nenten), die Normale, diffuse Farbe und zu-

sätzliche Materialparameter jeweils als

A8R8G8B8-Rendertarget. Somit würden Sie

pro Pixel bereits 224 Bits speichern, was sich

bei einer Auflösung von 1024x768 auf 21

Megabyte summieren würde, ohne das Sie An-

ti-Aliasing verwenden könnten. Ein dabei

verschwiegenes Problem ist, dass die momen-

tane Grafikhardware es gar nicht erlaubt,

unterschiedliche Bit-Tiefen bei multiplen

Rendertargets zu verwenden.

In unserem Beispielprogramm verwenden Sie

die folgende Konfiguration, wobei wir uns auf

32-Bit-Rendertargets beschränken wollen. Um

trotzdem eine genügend hohe Genauigkeit zu

erzielen, teilen Sie die 3D-Position auf zwei

Rendertargets mit je zwei 16-Bit-Float-Werten

auf (D3DFMT_G16R16F). Die Normale spei-

chern Sie entweder in einem A8R8G8B8

Target, d.h. mit drei 8-Bit-Komponenten und

einem noch unbelegten Byte für weitere Daten

oder, wenn Sie noch mehr Genauigkeit wün-

schen, in einem A2R10G10B10 Rendertarget,

also mit 10 Bit pro Komponente. Die Material-

parameter beschränken sich in unserem

Beispiel auf eine diffuse Farbe, die Sie in ein

A8R8G8B8 Target schreiben.

Implementation

Unser Beispielprogramm verwendet

Direct3D9 und basiert auf dem Framework,

das Sie vielleicht schon aus früheren Aus-

gaben kennen. Den vollständigen Quelltext

finden Sie wie immer auf der Heft CD. Die Be-

schreibung hier konzentriert sich deshalb auf

die relevanten Teile für die Deferred Shading

Konzepte.

Die Rendertargets legen Sie mit der D3DXCrea-

teTexture-Methode an. Wichtig ist, dass Sie bei

dem Verwendungszweck der Textur (Usage-

Flag) D3DUSAGE_RENDERTARGET angeben

und das entsprechende Pixelformat wählen.

Mit der GetSurfaceLevel-Methode des IDI-

RECT3DTEXTURE9-Interfaces (also Ihres Tex-

tur-Objektes) holen Sie sich einen Zeiger auf

die erste Surface Ihrer Rendertarget-Textur.

In dem initialen Renderpass beschreiben Sie al-

so die Rendertargets, deren Verwendung Sie Di-

rect3D zunächst mitteilen müssen. Vorher ho-

len Sie die Referenz auf den Backbuffer ein, auf

den das später sichtbare Bild gerendert wird:

LPDIRECT3DSURFACE9 lpBackBuffer;

Anschließend können Sie schon beginnen, die

Geometrie zu rendern. Um die multiplen Ren-

dertargets beschreiben zu können, benötigen

Sie einen Vertex und Pixel Shader, den das Bei-

spielprogramm mit der Microsoft High Level

Shader Language und einem Effect File definiert:

pEffect->SetTechnique(„InitialPass“);
renderScene();

Der Vertex Shader übernimmt dabei die her-

kömmliche Transformation der Vertices für die

Rasterisierung (matMVP Matrix) und die Trans-

formation der Koordinaten in den World

Space (matMV), um später die Beleuchtung zu

berechnen. Diese werden – genauso, wie die

Normale und die Textur-Koordinaten (für nor-

males Textur-Mapping) – in den Textur-Koor-

dinaten-Registern an die Rasterisierungseinheit

übergeben:

FRAGMENT vsInitialPass(VERTEX vertex)
... return f;
}

Der Pixel Shader nimmt diese Informationen,

vom Rasterisierer für jeden Pixel interpoliert,

entgegen, erledigt das normale Textur-Map-

ping und kodiert und verteilt die Information

auf die Rendertargets.

struct FRAGRESULT
{
float4 color[4] : COLOR;
};

FRAGRESULT psInitialPass(FRAGMENT
fragment)
{
FRAGRESULT f;

Mit diesen Shadern rendern Sie Ihre komplet-

te Geometrie. Für den zweiten und letzten

Renderpass setzen Sie als Rendertarget wieder

den ursprünglichen Backbuffer:

pD3DDevice->SetRenderTarget(1,NULL);
pD3DDevice->SetRenderTarget(2,NULL);
pD3DDevice->SetRenderTarget(3,NULL);
pD3DDevice-
>SetRenderTarget(0,lpBackBuffer);

Als Beispiel beleuchten Sie jetzt die Szene mit

einer Lichtquelle. Dazu rendern Sie ein bild-

schirmfüllendes Rechteck, auf das die Render-

targets als Textur gespannt sind. Dazu verwen-

den Sie folgenden Code, wobei die Abbildungs-

matrizen die Identitätsabbildung enthalten:

typedef struct
{
float x, y, z, u, v;
}TEXTUREDVERTEX;

TEXTUREDVERTEX screenQuad[] =
{
{ -1, -1, 0, 0, 1 },
{ -1, 1, 0, 0, 0 },
{ 1, -1, 0, 1, 1 },
{ 1, 1, 0, 1, 0 },
};

pD3DDevice->SetFVF(
D3DFVF_XYZ|D3DFVF_TEX1);
pD3DDevice->SetRenderState(
D3DRS_CULLMODE, D3DCULL_CCW);
pD3DDevice->DrawPrimitiveUP(
D3DPT_TRIANGLESTRIP, 2, screenQuad,
sizeof(TEXTUREDVERTEX));

Die Beleuchtungsberechnung übernimmt der

folgende Pixel Shader, der ebenfalls im Effect-

File definiert ist.

struct FRAGMENT_DEFERRED

183

PC
 M

ag
az

in
 8

/2
00

4
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Quelltexte sowie fertig übersetzte Routinen > CD
Praxis/Programmierung/PC Underground

MINI-CDCD

World Space: Der genaue Ort der Oberfläche
liegt im Raum.

Die Normale: Sie ist wichtig für die Beleuch-
tungsberechnung.

Zunächst lesen Sie die vier ehemaligen

Rendertargets aus:

float4 posXY, posZ, normal, color;

Und rekonstruieren die Normale bzw. World

Space Position:

normal = normalize(normal*2.0-1.0);
float4 worldSpacePos =
float4(posXY.x,posXY.y,posZ.x,1.0);

Anschließend führen Sie die Beleuchtungs-

berechnung aus und modulieren die diffuse

Oberflächenfarbe und addieren die spekulare

Beleuchtung. So erhalten Sie den endgültigen

Farbwert, den Sie in den Framebuffer schrei-

ben:

float4 eye, light, reflection, lit;

Mehr Licht

Wenn Sie die Szene mit weiteren Lichtquellen

beleuchten wollen, müssen Sie den letzten

Renderpass einfach nur wiederholen und

dabei additives Blending im Framebuffer ein-

stellen. Bei lokalen Lichtquellen, die nur einen

Teil der Szene ausleuchten sollen, wie z.B.

durch eine entfernungsabhängige Abschwä-

chung, müssen Sie nicht jedes Mal den ganzen

Bildschirm füllen. Stattdessen sparen Sie Ren-

dering-Zeit, indem Sie nur den Teil des Bild-

schirms erneut rendern, der im Einflussgebiet

der Lichtquelle liegt. Dazu erzeugen Sie für

jede dieser Lichtquellen – als Vorberechnungs-

schritt – ein einfaches konvexes Dreiecksnetz,

das den ausgeleuchteten Raum enthält. Dieses

Dreiecksnetz rendern Sie mit dem entspre-

chenden Pixel Shader für die Beleuchtung. Der

von diesem Netz bedeckte Bereich am Bild-

schirm ist der, den die Lichtquelle potentiell

beeinflusst und für den Sie die Beleuchtungs-

berechnung durchführen müssen. Wichtig ist

dabei, dass jeder Pixel nur einmalig behandelt

wird. Bei konvexen Dreiecksnetzen können Sie

das durch Backface Culling erwirken. Achten

Sie dabei darauf, dass Sie nur die Vorderseiten

rendern, wenn sich die Kamera außerhalb des

Netzes befindet, ansonsten rendern Sie die

Rückseiten.

Ein weiteres Problem ergibt sich, wenn das

Netz die Near und/oder Far Clipplane schnei-

det. Diese Fälle müssen Sie speziell, z.B.

durch Clamping des Volumens im Vertex

Shader, behandeln. Um das Rendering zu

beschleunigen, können Sie für das Zeichnen

dieser Light Volumes Z-Buffering verwenden.

Die notwendige Information haben Sie durch

das Rendern im initialen Pass schon im

Tiefenpuffer gespeichert. Je nachdem, ob Sie

Vorder- oder Rückseiten zeichnen, verwen-

den Sie als Z-Buffer Test D3DCMP_LESS bzw.

D3DCMP_GREATER.

Frame Buffer Optimierungen

Der hohe Speicherbedarf der Rendertargets

kann dazu führen, dass die Grafikhardware

durch viel Speichertransfer ausgebremst wird.

Um dies zu vermeiden, können Sie die Menge

der gespeicherten Information reduzieren,

wenn Sie dafür etwas mehr Rechenaufwand

in Kauf nehmen. Die Frage, welche der im fol-

genden vorgestellten Optionen am schnellsten

ist, hängt vom jeweiligen Einsatz, Beleuch-

tungsmodell und Grafikkarte ab und lässt sich

im Vornherein nicht beantworten.

Den größten Teil der Daten nimmt das Spei-

chern der World Space Position ein. Dabei ist

durch die 2D-Position eines Pixels auf dem

Bildschirm und die Kameraparameter ein

Sichtstrahl durch jeden Pixel im Raum defi-

niert. Statt der World Space Position speichern

Sie die Entfernung zum ersten Oberflächen-

punkt, den der Strahl schneidet. Dadurch

können Sie die Position im Beleuchtungs-Ren-

derpass berechnen. Diese Entfernung ist dabei

nichts anderes als der Tiefenpuffer. Leider kön-

nen Sie nicht performant auf den Tiefenpuffer

der Grafikkarte zugreifen, aber Sie können die

Information selbst berechnen und in einem

Rendertarget speichern. Wenn Sie dafür einen

32-Bit-IEEE-Float verwenden, haben Sie die

Information schon deutlich reduziert: In unse-

rem Beispielprogramm würden Sie ein

Rendertarget bzw. 32 Bit pro Pixel sparen.

Die Normale können Sie auch etwas spar-

samer kodieren. Bei einer normalisierten Nor-

male ist x2+y2+z2=1. Wenn Sie nur zwei

Komponenten speichern wie x und y können

Sie die dritte im Pixel Shader berechnen: z =

sqrt(1-x2-y2). Eine dritte Option ist, dass Sie die

Materialparameter nicht direkt in den Fat-Buf-

fers speichern, sondern nur einen Index bzw.

Verweis. Dieser Index wird im Beleuchtungs-

Renderpass dazu verwendet, um die tatsäch-

lichen Materialparameter aus einer Textur

auszulesen.

High Dynamic Range (HDR)

Wenn Sie die Renderpasses für die Beleuch-

tung nicht direkt in den Framebuffer ausfüh-

ren, sondern in weitere Rendertargets mit

Floating-Point-Genauigkeit, können Sie den

Wertebereich der erfassbaren Lichtintensität

erhöhen. Allerdings müssen Sie sich um das

additive Blending selbst bemühen. Das Rende-

ring mit erhöhtem Wertebereich wird mit High

Dynamic Range Rendering bezeichnet. Diese

Information gilt es natürlich auf den normalen

Helligkeitsbereich des Monitors bzw. Frame-

buffers abzubilden. Allerdings lassen sich

Helligkeitsszenarien programmieren. Zudem

können Sie Post-Processing-Effekte wie Glow

anwenden.

Vor- und Nachteile

Die Vorteile von Deferred Shading ist die einfa-

che Handhabung von sehr komplexen Szenen

mit vielen Lichtquellen, komplexen Objekten

und Post-Processing Effekten. Außerdem

zeichnen Sie jedes Objekt nur einmalig und

schattieren auch jeden Pixel nur einmal. Der

Nachteil liegt im nicht vernünftig machbaren

Alpha Blending, der hohen Speicherbandbrei-

te und darin, dass Sie Hardware Multisampling

nicht verwenden können. Und nicht zu verges-

sen: Sie benötigen Hardware, die Pixel-Shader

unterstützt, denn alle Beleuchtungsberechnun-

gen sind darauf angewiesen. : et

PROGRAMMIERUNG : PC UNDERGROUND

184

PC
 M

ag
az

in
 8

/2
00

4
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

www.dachsbacher.de/pcu
www.ati.com/developer/

Glow: Die spekulare Beleuchtung wird dank
HDR übersteuert.

High Dynamic Range: Sie zeigt eine diffuse
Beleuchtung und sehr helle spekulare
Reflektion.

