PC Magazin 8/2004 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

Mit Deferred-shading-
Techniken zeichnen Sie lhre
3D-Szenen zunachst villig
ohne Beleuchtungsherechnung.
Diese iibernimmt einmalig ein
finaler Nachbearbeitungsschritt
fiir jeden sichtbaren Pixel.

Carsten Dachsbacher

Deferred Shading — Beleuchtung als Post Processing

Schattenspiel

Das Deferred Shading konstruiert die

Geometrie einer 3D-Szene zunachst oh-
ne Beleuchtungsberechnung. Dabei zeichnen
Sie nicht in den normalen sichtbaren Frame-
buffer, sondern in so genannte Fat-Buffers.
Der Name kommt daher, dass diese Buffer,
verteilt auf mehrere gleichzeitig beschreibba-
re Rendertargets, verhéltnismégig viel Daten
pro Pixel enthalten, wie z.B. die 3D-Position
und die Normale der — in diesem Pixel —
sichtbaren Oberflache. Nach dem Zeichnen
der Szene wird die Beleuchtungsberechnung
fir jeden Pixel durchgefiihrt: die dafiir
notwendige Information befindet sich in den
Fat-Buffers. Fir diese Technik bendétigen Sie
natiirlich modernere, programmierbare
Crafikkarten der DirectX9-Generation, um

Deferred Shading: Sie berechnen die
Beleuchtung nur einmal pro Pixel.

zum Einen die Rendertargets (dynamische
Texturen) zu beschreiben und zum Anderen
die Beleuchtungsberechnung in einem Pixel-
Shader zu programmieren.

Vergleich

Unter den vielen Varianten Lighting/Shading
fir das Echtzeit-Rendering, greifen wir an
dieser Stelle drei Varianten heraus, die mit
dynamischen Lichtquellen und lokaler
Beleuchtungsberechnung arbeiten. Das
Single-Pass-Verfahren berechnet das Lighting
direkt beim Rendern der Geometrie. Dieser
Ansatz ist gut geeignet, um Szenen mit weni-
gen Lichtquellen darzustellen. Bei einer
groflen Anzahl von Lichtquellen wird die
Organisation der Shader und der Lichtquel-
len, die fiir ein Objekt relevant sind, schwie-
rig und der Vertex/Pixel Shader leicht zu kom-
plex. Beim Multi Pass Lighting wird jeweils
nur eine Lichtquelle auf ein Objekt angewen-
det und dieses gegebenenfalls mehrfach ge-
zeichnet und in den Framebuffer geblendet.
Das Problem hierbei ist der entstehende Auf-
wand bei der Verwaltung und dem Rendering
von Lichtquellen und Objekten.

Beim Deferred Shading miissen Sie sich um
die Zahl der endgiiltig angewendeten Licht-
quellen beim Zeichnen der Objekte keine
Gedanken machen. Fiir die Performance ist es
auch nahezu egal, ob Sie viele klein- oder
wenige grofiflichige Lichtquellen in Ihrer
Szene verwenden.

Quelltexte sowie fertig iibersetzte Routinen > CD
Praxis/Programmierung/PC Underground

Multiple Render Targets

In den Rendertargets, also dem Ergebnis des
Geometrie-Renderings, benotigen Sie neben
der 3D-Position jedes Pixels und seiner Norma-
le noch Materialparameter. Diese konnen je
nach verwendetem Beleuchtungsmodell vari-
ieren. Typischerweise umfassen die Parameter
die diffuse Oberflachenfarbe, spekulare Reflek-
tion und eventuell auch Parameter fiir Licht-
emission und Subsurface-Scattering.
Prinzipiell sollten Sie die Datenmenge aber so
gering wie moglich halten, wie das folgende
Beispiel zeigt. Nehmen Sie an, Sie speichern
die Position in einem A32R32G32B32 Render-
target (32 Bit IEEE Float fiir alle vier Kompo-
nenten), die Normale, diffuse Farbe und zu-
sdtzliche Materialparameter jeweils als
A8R8GEBS-Rendertarget. Somit wiirden Sie
pro Pixel bereits 224 Bits speichern, was sich
bei einer Auflésung von 1024x768 auf 21
Megabyte summieren wiirde, ohne das Sie An-
ti-Aliasing verwenden konnten. Ein dabei
verschwiegenes Problem ist, dass die momen-
tane Grafikhardware es gar nicht erlaubt,
unterschiedliche Bit-Tiefen bei multiplen
Rendertargets zu verwenden.

In unserem Beispielprogramm verwenden Sie
die folgende Konfiguration, wobei wir uns auf
32-Bit-Rendertargets beschréanken wollen. Um
trotzdem eine geniigend hohe Genauigkeit zu
erzielen, teilen Sie die 3D-Position auf zwei
Rendertargets mit je zwei 16-Bit-Float-Werten
auf (D3DFMT_G16R16F). Die Normale spei-
chern Sie entweder in einem ASRS8GSBS
Target, d.h. mit drei 8-Bit-Komponenten und
einem noch unbelegten Byte fiir weitere Daten
oder, wenn Sie noch mehr Genauigkeit wiin-
schen, in einem A2R10G10B10 Rendertarget,
also mit 10 Bit pro Komponente. Die Material-
parameter beschrdnken sich in unserem
Beispiel auf eine diffuse Farbe, die Sie in ein
A8R8GS8BS Target schreiben.

Implementation

Unser Beispielprogramm verwendet
Direct3D9 und basiert auf dem Framework,
das Sie vielleicht schon aus fritheren Aus-
gaben kennen. Den vollstdndigen Quelltext
finden Sie wie immer auf der Heft CD. Die Be-
schreibung hier konzentriert sich deshalb auf
die relevanten Teile fiir die Deferred Shading
Konzepte.

Die Rendertargets legen Sie mit der D3DXCrea-
teTexture-Methode an. Wichtig ist, dass Sie bei
dem Verwendungszweck der Textur (Usage-
Flag) D3DUSAGE _RENDERTARGET angeben
und das entsprechende Pixelformat wéhlen.
Mit der GetSurfaceLevel-Methode des IDI-

RECT3DTEXTURE9-Interfaces (also Thres Tex-
tur-Objektes) holen Sie sich einen Zeiger auf
die erste Surface Ihrer Rendertarget-Textur.

In dem initialen Renderpass beschreiben Sie al-
so die Rendertargets, deren Verwendung Sie Di-
rect3D zundchst mitteilen miissen. Vorher ho-
len Sie die Referenz auf den Backbulffer ein, auf
den das spéter sichtbare Bild gerendert wird:

LPDIRECT3DSURFACE9 1lpBackBuffer;

Anschliefend koénnen Sie schon beginnen, die
Geometrie zu rendern. Um die multiplen Ren-
dertargets beschreiben zu kénnen, benétigen
Sie einen Vertex und Pixel Shader, den das Bei-
spielprogramm mit der Microsoft High Level
Shader Language und einem Effect File definiert:

pEffect->SetTechnique(,InitialPass®);
renderScene() ;

Der Vertex Shader Gibernimmt dabei die her-
kommliche Transformation der Vertices fiir die
Rasterisierung (matMVP Matrix) und die Trans-
formation der Koordinaten in den World
Space (matMV), um spéter die Beleuchtung zu
berechnen. Diese werden — genauso, wie die
Normale und die Textur-Koordinaten (fiir nor-
males Textur-Mapping) — in den Textur-Koor-
dinaten-Registern an die Rasterisierungseinheit
ibergeben:

FRAGMENT vsInitialPass(VERTEX vertex)
return f;

}

Der Pixel Shader nimmt diese Informationen,
vom Rasterisierer fiir jeden Pixel interpoliert,
entgegen, erledigt das normale Textur-Map-
ping und kodiert und verteilt die Information
auf die Rendertargets.

struct FRAGRESULT

{
float4 color[4] : COLOR;
}s
FRAGRESULT psInitialPass(FRAGMENT
fragment)
{

FRAGRESULT f;

Mit diesen Shadern rendern Sie Ihre komplet-
te Geometrie. Fir den zweiten und letzten
Renderpass setzen Sie als Rendertarget wieder
den urspriinglichen Backbuffer:

pD3DDevice->SetRenderTarget(1,NULL);
pD3DDevice->SetRenderTarget (2,NULL);
pD3DDevice->SetRenderTarget (3,NULL);
pD3DDevice-

>SetRenderTarget (0, 1lpBackBuffer);

Als Beispiel beleuchten Sie jetzt die Szene mit
einer Lichtquelle. Dazu rendern Sie ein bild-

(010} MINI-CD

schirmfiillendes Rechteck, auf das die Render-
targets als Textur gespannt sind. Dazu verwen-
den Sie folgenden Code, wobei die Abbildungs-
matrizen die Identitdtsabbildung enthalten:

typedef struct
{

float x, y, z, u, v;
}TEXTUREDVERTEX;

TEXTUREDVERTEX screenQuad[] =

{
{-1, -1, 0, 0, 11},
{ '15 11 05 0; 0 }s
{ 1, -1, 0, 1, 11},
{ 1, 1,0, 1,01},
b

pD3DDevice->SetFVF(
D3DFVF_XYZ|D3DFVF_TEX1);
pD3DDevice->SetRenderState(
D3DRS_CULLMODE, D3DCULL_CCW);
pD3DDevice->DrawPrimitiveUP (
D3DPT_TRIANGLESTRIP, 2, screenQuad,
sizeof(TEXTUREDVERTEX));

Die Beleuchtungsberechnung tibernimmt der
folgende Pixel Shader, der ebenfalls im Effect-
File definiert ist.

struct FRAGMENT_DEFERRED

World Space: Der genaue Ort der Oberflache
liegt im Raum.

Die Normale: Sie ist wichtig fiir die Beleuch-
tungsherechnung.

183

@
=
£
N
©
=
©
g
o
=
=
s
=
<
=)
<]
I
S
=)
£
N
©
1=
©
=
o
o

PC Magazin 8/2004 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

Zunachst lesen Sie die vier ehemaligen
Rendertargets aus:

float4 posXY, posZ, normal, color;

Und rekonstruieren die Normale bzw. World
Space Position:

normal = normalize(normal*2.0-1.0);
float4 worldSpacePos =
float4(posXY.x,posXY.y,posZ.x,1.0);

Anschlieend fithren Sie die Beleuchtungs-
berechnung aus und modulieren die diffuse
Oberflachenfarbe und addieren die spekulare
Beleuchtung. So erhalten Sie den endgiiltigen
Farbwert, den Sie in den Framebuffer schrei-
ben:

float4 eye, light, reflection, 1lit;

Mehr Licht

Wenn Sie die Szene mit weiteren Lichtquellen
beleuchten wollen, miissen Sie den letzten
Renderpass einfach nur wiederholen und

Glow: Die spekulare Beleuchtung wird dank
HDR iibersteuert.

High Dynamic Range: Sie zeigt eine diffuse
Beleuchtung und sehr helle spekulare
Reflektion.

dabei additives Blending im Framebuffer ein-
stellen. Bei lokalen Lichtquellen, die nur einen
Teil der Szene ausleuchten sollen, wie z.B.
durch eine entfernungsabhéangige Abschwa-
chung, miissen Sie nicht jedes Mal den ganzen
Bildschirm fiillen. Stattdessen sparen Sie Ren-
dering-Zeit, indem Sie nur den Teil des Bild-
schirms erneut rendern, der im Einflussgebiet
der Lichtquelle liegt. Dazu erzeugen Sie fiir
jede dieser Lichtquellen — als Vorberechnungs-
schritt — ein einfaches konvexes Dreiecksnetz,
das den ausgeleuchteten Raum enthalt. Dieses
Dreiecksnetz rendern Sie mit dem entspre-
chenden Pixel Shader fiir die Beleuchtung. Der
von diesem Netz bedeckte Bereich am Bild-
schirm ist der, den die Lichtquelle potentiell
beeinflusst und fiir den Sie die Beleuchtungs-
berechnung durchfithren miissen. Wichtig ist
dabei, dass jeder Pixel nur einmalig behandelt
wird. Bei konvexen Dreiecksnetzen konnen Sie
das durch Backface Culling erwirken. Achten
Sie dabei darauf, dass Sie nur die Vorderseiten
rendern, wenn sich die Kamera auerhalb des
Netzes befindet, ansonsten rendern Sie die
Riickseiten.

Ein weiteres Problem ergibt sich, wenn das
Netz die Near und/oder Far Clipplane schnei-
det. Diese Fdlle miissen Sie speziell, z.B.
durch Clamping des Volumens im Vertex
Shader, behandeln. Um das Rendering zu
beschleunigen, konnen Sie fiir das Zeichnen
dieser Light Volumes Z-Buffering verwenden.
Die notwendige Information haben Sie durch
das Rendern im initialen Pass schon im
Tiefenpuffer gespeichert. Je nachdem, ob Sie
Vorder- oder Riickseiten zeichnen, verwen-
den Sie als Z-Buffer Test D3DCMP_LESS bzw.
D3DCMP_GREATER.

Frame Buffer Optimierungen

Der hohe Speicherbedarf der Rendertargets
kann dazu fiihren, dass die Grafikhardware
durch viel Speichertransfer ausgebremst wird.
Um dies zu vermeiden, kénnen Sie die Menge
der gespeicherten Information reduzieren,
wenn Sie dafiir etwas mehr Rechenaufwand
in Kauf nehmen. Die Frage, welche der im fol-
genden vorgestellten Optionen am schnellsten
ist, hdngt vom jeweiligen Einsatz, Beleuch-
tungsmodell und Grafikkarte ab und l&sst sich
im Vornherein nicht beantworten.

Den grofiten Teil der Daten nimmt das Spei-
chern der World Space Position ein. Dabei ist
durch die 2D-Position eines Pixels auf dem
Bildschirm und die Kameraparameter ein
Sichtstrahl durch jeden Pixel im Raum defi-
niert. Statt der World Space Position speichern
Sie die Entfernung zum ersten Oberflachen-
punkt, den der Strahl schneidet. Dadurch

konnen Sie die Position im Beleuchtungs-Ren-
derpass berechnen. Diese Entfernung ist dabei
nichts anderes als der Tiefenpuffer. Leider kon-
nen Sie nicht performant auf den Tiefenpuffer
der Grafikkarte zugreifen, aber Sie kdnnen die
Information selbst berechnen und in einem
Rendertarget speichern. Wenn Sie dafiir einen
32-Bit-IEEE-Float verwenden, haben Sie die
Information schon deutlich reduziert: In unse-
rem Beispielprogramm wiirden Sie ein
Rendertarget bzw. 32 Bit pro Pixel sparen.
Die Normale kénnen Sie auch etwas spar-
samer kodieren. Bei einer normalisierten Nor-
male ist xX2+y?+z2=]. Wenn Sie nur zwei
Komponenten speichern wie x und y kénnen
Sie die dritte im Pixel Shader berechnen: z =
sqrt(1 fx27y2) . Eine dritte Option ist, dass Sie die
Materialparameter nicht direkt in den Fat-Buf-
fers speichern, sondern nur einen Index bzw.
Verweis. Dieser Index wird im Beleuchtungs-
Renderpass dazu verwendet, um die tatsach-
lichen Materialparameter aus einer Textur
auszulesen.

High Dynamic Range (HDR)

Wenn Sie die Renderpasses fiir die Beleuch-
tung nicht direkt in den Framebuffer ausfiih-
ren, sondern in weitere Rendertargets mit
Floating-Point-Genauigkeit, konnen Sie den
Wertebereich der erfassbaren Lichtintensitét
erhohen. Allerdings miissen Sie sich um das
additive Blending selbst bemiihen. Das Rende-
ring mit erh6htem Wertebereich wird mit High
Dynamic Range Rendering bezeichnet. Diese
Information gilt es natiirlich auf den normalen
Helligkeitsbereich des Monitors bzw. Frame-
buffers abzubilden. Allerdings lassen sich
Helligkeitsszenarien programmieren. Zudem
konnen Sie Post-Processing-Effekte wie Glow
anwenden.

Vor- und Nachteile

Die Vorteile von Deferred Shading ist die einfa-
che Handhabung von sehr komplexen Szenen
mit vielen Lichtquellen, komplexen Objekten
und Post-Processing Effekten. Auflerdem
zeichnen Sie jedes Objekt nur einmalig und
schattieren auch jeden Pixel nur einmal. Der
Nachteil liegt im nicht verniinftig machbaren
Alpha Blending, der hohen Speicherbandbrei-
te und darin, dass Sie Hardware Multisampling
nicht verwenden kénnen. Und nicht zu verges-
sen: Sie benotigen Hardware, die Pixel-Shader
unterstiitzt, denn alle Beleuchtungsberechnun-
gen sind darauf angewiesen. et

www.dachsbacher.de/pcu
www.ati.com/developer/

