
Das Deferred Shading konstruiert die

Geometrie einer 3D-Szene zunächst oh-

ne Beleuchtungsberechnung. Dabei zeichnen

Sie nicht in den normalen sichtbaren Frame

Buffer, sondern in so genannte Fat Buffers.

Tiefenunschärfe bewirkt, dass Objekte, die au-

ßerhalb des Fokus liegen, unscharf erscheinen.

Typischerweise verwendet die Echtzeit-Com-

putergrafik ein Lochkamera-Modell, um per-

fekt scharfe Bilder der ganzen Szene zu erzeu-

gen. Reale Kameras brauchen Linsen mit end-

lichen Maßen, um die Szene auf die Bildebene

abzubilden. Das verursacht die Tiefenunschär-

fe. Für höchste Qualität und fotorealistisches

Rendering sind Tiefenunschärfe-Effekte ein

wichtiger Bestandteil, sowohl für den realisti-

schen Eindruck, als auch als Stilmittel, um die

wesentlichen Komponenten der Szene zu un-

terstreichen. Für Depth-of-Field-Effekte (DOF)

gibt es verschiedene Ansätze. Ein sehr elegan-

ter Ansatz für DirectX9-Grafik-Hardware, den

wir Ihnen hier auch vorstellen, ist der von

T. Scheuermann/ATI Research.

Im Bild sehen Sie die Unterschiede zwischen

einer Lochkamera und einer Abbildung durch

eine Linse. Im ersten Fall passiert für jede Rich-

tung nur ein Lichtstrahl. Bei der Abbildung ei-

nes Objekts außerhalb des Fokus auf die Bild-

ebene mit dem Linsenmodell mit einer dün-

nen Linse tragen mehrere bzw. viele Strahlen

zu einem Bildpunkt bei. Der Bereich auf der

Ebene lässt sich gut durch einen Kreis appro-

ximieren, dem Circle of Confusion (CoC).

Implementation

Im vorgestellten Ansatz müssen Sie eventuell

bestehende Implementationen nicht großartig

modifizieren, um den DOF-Effekt darzustellen.

Lediglich der Alpha-Kanal wird verwendet, um

die Tiefe für jeden Pixel zu speichern. Wenn

Sie den Alpha-Kanal für Blending Operationen

PROGRAMMIERUNG : PC UNDERGROUND

176

PC
 M

ag
az

in
 9

/2
00

4
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Tiefenunschärfe ist ein Effekt,

der deutlich zum realistischen

Eindruck einer Animation

beiträgt – aber allzu oft

ignoriert wird. Wir zeigen

Ihnen, wie Sie diesen Effekt

mit Direct3D in Echtzeit

erreichen.

Carsten Dachsbacher

Realistische 3D-Bilder durch mangelnde Schärfe

Tiefenunschärfe
mit Direct3Dw

or
ks

ho
p

Kameramodelle: Für
das mathematische
Modell ziehen Sie die
Loch- der Linsenka-
mera vor.

benötigen macht das nichts – die Tiefeninfor-

mation schreiben Sie erst im jeweils letzten

Renderpass in den Alpha-Kanal, also nachdem

Sie diesen nicht mehr benötigen.

Der Tiefenwert, den Sie in den Alpha-Kanal

schreiben, ist die relative Tiefe. Das bedeutet,

die Entfernung der Near-Plane entspricht der

Tiefe -1, der Far-Plane +1 und der Focus-Ebe-

ne entspricht ein Tiefenwert von 0. Diese drei

Werte übergeben Sie an den Pixel-Shader, mit

dem Sie auch den Alpha-Wert berechnen. Ein

Maß für die Größe des CoC erhalten Sie, wenn

Sie den Absolutwert dieser Funktion nehmen.

Vor der Ausgabe des Resultats müssen Sie das

Intervall [-1;+1] auf [0;1] abbilden, da der

Framebuffer nur diesen Wertebereich kennt.

Folgender HLSL (High Level Shader Language)

Code zeigt die Abbildung. Im Vertex-Shader

berechnen Sie die Entfernung entlang der

Blickrichtung:

// matWV: model->world transformation
float4 toVertex =
mul(matWV,vertex.pos)-

cameraPosition;
dist = dot(cameraDirection,toVertex);

Im Pixel-Shader nehmen Sie die Abbildung vor:

float a;
if (dist < zFocal)
a=(dist-zFocal)/(zFocal-zNear); else
a=(distance-zFocal)/(zFar-zFocal);

a = a * 0.5f + 0.5f;

Das ist schon alles, was Sie während des nor-

malen Renderings vornehmen müssen. Wie

sich die Wahl der Focal-Plane auswirkt, sehen

Sie im Bild. Als stilistische Erweiterung können

Sie in der obigen Berechnung eine obere oder

untere Grenze für die relative Tiefe angeben.

Der Effekt: Sie erzwingen damit, dass bestimm-

te Gegenstände Ihrer 3D-Szene immer schärfer

oder verschwommener dargestellt werden, als

es eigentlich – aufgrund des Betrachterabstan-

des – der Fall wäre. Man kann dabei auch von

semantischer Tiefenunschärfe sprechen.

Alle weiteren Schritte sind Aufgabe des Post-

Processing, entstehen also durch Nachbear-

beitung aus dem fertig gerenderten Bild, wel-

ches Sie am besten in eine Textur haben ren-

dern lassen. Zunächst beginnen Sie damit –

wie immer, wenn Sie einen Blur-Effekt darstel-

len wollen – eine niedriger aufgelöste Version

Ihres Bildes anzulegen. Diese sollte etwa ein

Viertel der Kantenlänge des Originals groß

sein. Zusätzlich wenden Sie zum Glätten die-

ser Version noch einen Gauss-Filter an.

Der PC Underground Beitrag Echtzeit Proces-

sing (06/03, S.188, Heft-CD) beschreibt eine ef-

fiziente Art, einen Gauss-Filter auf ein Bild an-

zuwenden. Aufgrund der Separierbarkeit in

horizontale und vertikale Anteile können Sie

auch sehr große Filter-Kernel wie 7x7 in nur

zwei Renderpasses anwenden. In diesem Fall

genügt aber bereits ein Filter-Kernel der Größe

3x3, den Sie in einem Renderpass implemen-

tieren, indem Sie im Vertex-Shader acht Textur-

Koordinaten berechnen und den neunten Te-

xel mit einer Textur-Koordinate auslesen, die

Sie im Pixel-Shader berechnen – also mit ei-

nem Dependent-Textur-Lookup. Beachten Sie

bei Textur-Loopups, dass Sie in Direct3D (und

im Gegensatz zu OpenGL) zur Textur-Koordi-

nate die Hälfte der Größe eines Texels addie-

ren müssen, um einen Texel exakt in seiner

Mitte auszulesen. Sie erhalten also nicht durch

bilineare Interpolation einen interpolierten

Farbwert.

Für den 3x3-Gauss-Filter verwenden Sie fol-

genden Code im HLSL-Vertex-Shader (bei ei-

ner Textur-Größe von 512x512), wenn Sie in

texCoord die Textur-Koordinaten annehmen.

So bilden Sie die Textur vollständig auf den

Viewport ab:

float ofs = 1.0/512.0;
float2 texelOffset =
float4(0.5/512.0, 0.5/512.0);

texcoord0 = texCoord +
float2(-ofs, -ofs) + texelOffset;

texcoord1 = texCoord +
float2(0.0f, -ofs) + texelOffset;

Analog bestimmen Sie die verbleibenden sie-

ben Nachbar-Texel. Im Pixel-Shader lesen Sie

die Textur aus, gewichten die Farb-Samples

entsprechend der Gauss-Glockenfunktion und

summieren die Farbwerte auf. So erhalten Sie

das gewünschte Resultat.

An dieser Stelle kommt der Post-Processing-Ef-

fekt: Um das Bild unscharf zu machen, benö-

tigen Sie einen Filter, für den Sie zunächst auf

einer Kreisscheibe stochastisch verteilte Ab-

tastpunkte gemäß einer Poisson-Verteilung

wählen. Mit diesem Filter-Kernel tasten Sie die

177

PC
 M

ag
az

in
 9

/2
00

4
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Quelltexte sowie fertig übersetzte Routinen > CD
Praxis/Programmierung/PC Underground

DVDCD

Bestimmung von Abtastpunkten

Aufgrund der Hardware-Beschränkungen können Sie pro Filter-Kernel nur sehr weni-
ge Abtastpunkte wählen. Daher soll die Wahl nicht unbedacht erfolgen. Ein regelmä-
ßiges Abtastmuster ist zwar leicht anzulegen und bietet eine gleichförmige Verteilung,
allerdings ist die menschliche Wahrnehmung für die daraus resultierenden Artefakte
sehr empfänglich. Deshalb ist es besser, eine Reihe zufällig verteilter Abtastpunkte zu
wählen. Es genügt dabei aber nicht, einfach per Zufallszahlengenerator acht oder 12
Koordinatenpaare zu erzeugen. Denn zu leicht können zwei oder mehr Punkte dicht
beieinander liegen.
Deshalb bietet sich folgende Methode an: Gehen Sie davon aus, dass Sie eine Liste mit
2D-Punkten haben, die sich alle in [-1;1]2 befinden. Um nun die Liste um einen weite-
ren Punkt zu erweitern, generieren Sie zufällig einige Kandidatenpunkte aus je zwei Zu-
fallszahlen [-1;1]. Achten Sie nur darauf, dass der Abstand des Kandidaten vom Ur-
sprung kleiner oder gleich 1 ist – schließlich wollen Sie eine Kreisscheibe abtasten.
Für jeden dieser Kandidatenpunkte berechnen Sie nun den kleinsten Abstand zu den
Punkten, die sich bereits in der Liste befinden. Schließlich fügen Sie den Kandidaten
mit dem größten Abstand zur Liste hinzu. Jetzt fragt sich noch, mit welcher Liste Sie
beginnen.
Angesichts der Tatsache, dass Sie einen Filter-Kernel bestimmen wollen, beginnen Sie
mit der Liste, die nur den Punkt (0,0) enthält. Mit dieser Methode können Sie sukzessi-
ve beliebig viele Abtastpunkte erzeugen.

Entfernung: So bilden Sie die Tiefe auf eine
relative Entfernung ab.

Im Alpha-Kanal: Die
relative Tiefe hängt
von der Wahl der
Fokus-Ebene nah, mit-
tel oder fern ab.

beiden Texturen (das hoch und niedrig aufge-

löste Bild) in der Umgebung jedes Pixels ab.

Die Größe der Kreisscheibe wählen Sie anhand

des Unschärfewertes, den Sie im Alpha-Kanal

abgelegt haben.

Um zu verhindern, dass Farbwerte von Objek-

ten, die sich näher am Betrachter befinden, in

weiter hinten liegende unscharfe Bereiche ver-

waschen, führen Sie für jeden Abtastpunkt

noch einen Tiefentest durch. Wie Sie solche

Abtastpunkte für den Filter-Kernel bestimmen

können, zeigt der Kasten Bestimmung von Ab-

tastpunkten.

Das Folgende erklärt die notwendigen Schritte

anhand von HLSL-Programmcode, den Sie in

unserem Beispielprogramm finden. Sie ren-

dern in den Post-Processing-Schritten jeweils

ein Rechteck, das den ganzen Bildschirm be-

deckt. Die Textur-Koordinaten sind so gewählt,

dass die Original-Bilder auf den Bildschirm ge-

mapped werden. Unser Beispiel geht davon

aus, dass die hochaufgelöste Version 5122 Pi-

xel enthält, die niedrige 1282. Im Pixel Shader

lesen Sie als erstes für jeden Pixel den entspre-

chenden Wert aus der Hi-Res-Textur. Die Tiefe

entnehmen Sie dem Alpha-Kanal. Dort haben

Sie sie ja gespeichert:

temp = tex2D(hiresImage, texcoord);
depth = temp.a;

Aus dem Tiefenwert berechnen Sie die Größe

des Filter-Kernels für das Hi-Res Bild und ska-

lieren daraus das Format für das Low-Res-Bild.

radius = abs(depth * 10.0f - 5.0f);
radiusLow = discRadius * radiusScale;
result = 0.0f;

Die nächsten Instruktionen führen Sie in einer

Schleife für jeden Abtastpunkt des Kernels

durch. Zuerst berechnen Sie die Textur-Koor-

dinaten, an denen die Bilder abgetastet wer-

den. Das taps-Array enthält die relativen 2D-

Koordinaten im Bereich [-1;+1]2 für den Filter.

float2 coordHigh, coordLow;
float4 tapHigh, tapLow, tap;
coordHigh = texcoord +
1.0/512.0 * taps[t] * radius;

coordLow = texcoord +
1.0/128.0 * taps[t] * radiusLow;

Mit den Faktoren 1/512 bzw. 1/128 passen Sie

die Filter-Kernel der Textur-Auflösung an. Um

Instruktionen zu sparen, können Sie auch Fil-

ter-Tap-Tabellen vorberechnen. Als nächstes

lesen Sie die beiden Texturen aus:

tapHigh=tex2D(hiresImage,coordHigh);
tapLow =tex2D(loresImage,coordLow);

Für jeden der Abtastpunkte bestimmen Sie,

wie stark der Unschärfe-Effekt sein soll. Dazu

dient der Unschärfewert aus dem Tiefenwert.

Anhand dieses Wertes interpolieren Sie linear

zwischen dem Farbwert des Hi-Res- und des

Lo-Res-Bildes:

tapBlur = abs(tapHigh.a*2.0f-1.0f);
tap = lerp(tapHigh,tapLow,tapBlur);

Um das Verwaschen der Farben von scharfen

Objekten im Vordergrund in unscharfe, weiter

entfernte Bereiche zu vermeiden, führen Sie

diesen Tiefentest durch:

tap.a = (tap.a < depth) ? 1.0f :
abs(tap.a * 2.0f - 1.0f);

Abschließend modulieren Sie die RGB-Werte

des Filters und akkumulieren die Farbwerte:

tap.rgb *= tap.a;
result += tap;

Wenn Sie diese Arbeitsschritte für jeden Ab-

tastwert durchgeführt haben, erhalten Sie den

resultierenden Farbwert durch einen letzten

Normalisierungsschritt

return result / result.a;

Hardware-Betrachtungen

Dieser Pixel-Shader ist – selbst für moderne

Grafik-Hardware – aufwändig. Auf einer ATI

Radeon 9700 könnten Sie nicht mehr als vier

Abtastpunkte verwenden, was nicht wirklich

zufrieden stellende Resultate zeigt. Zwei Wege

verbessern das Bild: Der erste ist ein optimier-

ter Pixel-Shader, so dass mehr Abtastpunkte

greifen. Dies können Sie z.B. mit Filter-Tap-Ta-

bellen erreichen, die mit der jeweiligen Textur-

Auflösung von Hi- und Lo-Res-Bild vormultipli-

ziert sind. Immer müssen Sie aber die Farbwer-

te und deren Akkumulation gewichten. Das

optimierte Beispielprogramm liest in einem

Renderpass immerhin fünf Abtastwerte aus

und liefert akzeptable Resultate. Für eine hö-

here Qualität (acht bis 12 Abtastwerte sind

gut) benötigen Sie mehr Renderpasses – das

ist der zweite Weg. Dabei rendern Sie bei-

spielsweise drei Renderpasses mit unter-

schiedlichen Abtastpunkten. Das Resultat die-

ser Passes, also die Farbwerte, müssen Sie ad-

dieren. Entweder Sie verwenden ein additives

Blending im Frame-Buffer, was aufgrund der 8-

Bit-Genauigkeit pro Komponente schlechte

Resultate liefert, oder Sie investieren mehr Auf-

wand. : et

PROGRAMMIERUNG : PC UNDERGROUND

178

PC
 M

ag
az

in
 9

/2
00

4
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Info
www.dachsbacher.de/pcu
www.ati.com/developer/techpapers.html

Down-Sampling: Das
gerenderte Bild verfei-
nern Sie mit Verklei-
nern und Filtern.

Abtastung: Die Größe
der Filter-Kernel vari-
iert.

Das Resultat: Eine
einfache Test-
Szene gestaltet
mit verschiedenen
Fokus-Ebenen.

