
In mehreren bisherigen Ausgaben von

PC Underground haben Sie verschiede-

ne Methoden kennen gelernt, die alle unter

den Begriff Bump Mapping fallen. Allen diesen

Verfahren, wie Emboss, Dot-Product 3 oder

Bump Mapping mit per Pixel Lighting (ab Pixel

Shader 2.0) ist gemein, dass sie die Oberfläche

selbst nicht verändern – lediglich die Oberflä-

chennormale wird bei der Beleuchtungsbe-

rechnung modifiziert, um den Eindruck von

komplexen Oberflächenstrukturen zu erwe-

cken. Oft genannt ist auch der Begriff Dis-

placement Mapping. Dies ist die naheliegenste

und aufwändigste Variante, um komplexe

Oberflächen darzustellen: Die Oberfläche wird

in eine Vielzahl von kleinen Dreiecken unter-

teilt. Die dadurch entstehenden Eckpunkte

werden senkrecht zur Oberflächennormale,

entsprechend einer Höhenfunktion oder Tex-

tur, verschoben. Für die neuen Vertices wer-

den auch neue Normalen berechnet, um die

Beleuchtung anzupassen.

Das hier vorgestellte Parallax Bump Mapping

reiht sich in die oben genannten Verfahren ein,

d.h. nur in die Beleuchtungsberechnung wird

eingegriffen. Aber es hat ein zusätzliches Fea-

ture, das den räumlichen Eindruck weiter ver-

stärkt. Zuvor begleiten wir Sie aber bei einem

kleinen mathematischen Exkurs, um die

Grundlagen für perfektes Bump Mapping zu

schaffen.

Tangent Space

Der Tangent Space ist das wichtigste Konzept

beim Bump Mapping mit Normal Maps – auch

als Bump Maps bezeichnet. Normal Maps sind

nichts anderes als Texturen, deren Farbwerte

Oberflächennormalen kodieren und zwar so,

dass die rot/grün/blau-Werte die X/Y/Z-Kom-

ponenten der Normale sind. Diese Normal

Maps werden wie normale Texturen auf eine

Oberfläche abgebildet. Bei der Beleuchtungs-

berechnung, die Sie für jeden Pixel durchfüh-

ren, wird die Normale ausgelesen. Allerdings

können Sie diese Normale nicht direkt ver-

wenden, weil in den Normal Maps die Orien-

tierung der gerade zu zeichnenden Oberfläche

nicht enthalten ist. Normal Maps konstruieren

Sie, als würde die Textur auf der X/Y-Ebene lie-

gen und die Z-Komponente nach oben zeigen.

PROGRAMMIERUNG : PC UNDERGROUND

194

PC
 M

ag
az

in
 1

2/
20

04
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Bump Mapping ist ein

verbreitetes Verfahren, um

detaillierte Oberflächen mit

Texturierungsmethoden

darzustellen. Es geht aber

besser, ohne gleich

aufwändiges Displacement

Mapping zu verwenden: mit

Parallax Bump Mapping!

Carsten Dachsbacher

Parallax Bump Mapping

Raum ohne
Rechenaufwandw

or
ks

ho
p

Normal Maps: So definieren Sie die Oberflä-
chenstrukturen.

An dieser Stelle kommt nun der Tangent

Space in Spiel. Dieser ist ein Koordinaten-Sys-

tem aus drei Achsen, das für jeden Vertex defi-

niert ist: Die X- und Y-Achse liegen in der Tan-

gentialebene an der Oberfläche an dem

Vertex. Diese beiden Achsen werden klassi-

scherweise mit Tangente und Binormale be-

zeichnet, obwohl für letztere die Bezeichnung

Bitangente korrekt wäre. Die Z-Achse ist gleich

der Vertex-Normalen.

Diese Definition des Tangent Space ist kon-

form mit der der Normal Maps: Wenn Sie die

Richtung zur Lichtquelle L und zum Betrachter

V, die Sie für die Beleuchtungsberechnung be-

nötigen, in den Tangent Space transformieren,

können Sie die Normale aus der Normal Maps

auslesen und direkt für die Beleuchtungsbe-

rechnung verwenden. Das Beispiel zeigt dies

mit Halfway-Vektoren und HLSL-Syntax:

float3 H=normalize(L+V);
float3 N=tex2D(bumpMap,texCoord)*2?1;

I=saturate(dot(N,L))*diffuseColor+
pow(saturate(dot(H,N)),spec)

*specColor;

Die Skalierung und Verschiebung des Werte-

bereichs bei der Normale ist notwendig, da in

der Textur Werte aus [0;1] enthalten sind. Die

Komponenten der Normalen werden zum

Speichern in der Textur vom Intervall [-1;1] in

das Intervall [0;1] abgebildet, um sie als RGB-

Farbwerte repräsentieren zu können. Solche

Normal Maps können Sie mit diversen Tools

wie von nVidia (siehe Literatur) aus Graustu-

fen-Höhenbildern erzeugen. Die Tangent Spa-

ces berechnen Sie also pro Vertex, d.h. Sie än-

dern sich auch über ein zu zeichnendes Drei-

eck. Das stellt aber kein Problem dar: Sie

berechnen die Transformationen in den Tan-

gent Space in einem Vertex Shader und die

Grafikkarte interpoliert die entsprechenden

Vektoren für Sie.

Berechnung des Tangent Space

Damit diese Interpolation gut geht, müssen Sie

darauf achten, dass die Tangent Spaces der

drei Eckpunkte eines Dreiecks sinnvoll gewählt

sind. Die einfachste Variante liefert in vielen

Fällen akzeptable Ergebnisse. Sie ist einfach

abhängig von der Normalen, einen Tangent

Space zu konstruieren. Nehmen Sie an, die

Normale des Vertex ist N=(nx,ny,nz). Ein Vek-

tor, der sicher nicht dieselbe Richtung hat (es

sei denn, N wäre Nullvektor), ist A=(ny, -nz,

nx). Durch ein Kreuzprodukt erhalten Sie ei-

nen der Tangentialvektoren T=N x A und

durch ein weiteres, den zweiten: B=T x N. Das

ist alles leicht in einem Vertex Shader zu be-

rechnen, aber bessere Ergebnisse erhalten Sie,

wenn Sie den Tangent Space an dem Mapping

der Texturen ausrichten.

Betrachten Sie dazu das Bild rechts unten: Ei-

ne Textur wird auf ein Dreieck (UVW) abgebil-

det, wobei P=(px,py,pz)T und Q=(qx,qy,qz)T

die Differenzvektoren der Eckpunkte (V-U)

bzw. (W-U) sind. Die Differenzvektoren der

Textur-Koordinaten sind (s1,t1)T bzw. (s2,t2)T,

d.h. der Wert s1 kennzeichnet die erste Kom-

ponente der Textur-Koordinate von V minus

der Ersten von U usw. Nun wollen wir zu-

nächst den Tangent Space für dieses Dreieck

bestimmen. Die Normale des Tangent Space,

also die Z-Achse, ist gleich der Normalen des

Dreiecks. Es verbleiben also die beiden Tan-

genten, die entlang der Ableitung der Textur-

Koordinaten zeigen sollen. Anschaulich be-

deutet das: Wenn Sie den Vektor (s1,t1)T, gege-

ben im Tangent Space, aus diesem heraus

transformieren, wollen Sie den Vektor P erhal-

ten. Diese Transformation heißt, die beiden

Komponenten mit der Tangenten bzw. Binor-

malen zu multiplizieren und zu addieren:

P = s1T+t1B bzw. P = s2T+t2B

Was also bleibt, ist ein Gleichungssystem mit

sechs Unbekannten, nämlich den Komponen-

ten von T und B, das sich mit Matrizen wie

folgt beschreiben lässt:

px py pz		s1 t1		Tx Ty Tz
	=		*	
qx qy qz		s2 t2		Bx By Bz

Dieses lösen Sie, indem Sie die Matrix mit den

Differenzen der Textur-Koordinaten invertieren

und danach an beiden Seiten multiplizieren:

s1 t1	-1 1	t2 -t1
	= ––––––––––– *	
s2 t2	s1*t2-s2*t1	-s2 s1

Auf der rechten Seite bleiben lediglich die Un-

bekannten. Nachdem Sie die Gleichungsseiten

getauscht haben, erhalten Sie:

|Tx Ty Tz|
| | =
|Bx By Bz|

1 |t2 -t1| |px py pz|
––––––––––– * | | * | |
s1*t2-s2*t1 |-s2 s1| |qx qy qz|

So erhalten Sie also T und B für ein Dreieck,

benötigen aber je einen Tangent Space pro

Vertex.

Dafür legen Sie ein Array an, das für jeden Ver-

tex drei Vektoren speichert. Diese initialisieren

Sie zunächst mit Null. Anschließend berech-

nen Sie für jedes Dreieck den Tangent Space

und addieren N, T und B auf den Tangent Spa-

ce seiner Eckpunkte.

Abschließend müssen Sie die Tangent Spaces

pro Vertex (bezeichnet mit NV, TV, BV)) noch

orthogonalisieren – wie im Folgenden mit der

Gram-Schmidt-Orthogonalisierung. Um für je-

den Vertex später nicht drei Vektoren zu spei-

chern, merken Sie sich lediglich die eine der

Tangenten und die Orientierung des Tangent

Spaces, also ob es sich um ein links- oder

rechtshändiges Koordinatensystem handelt.

Die zu speichernde Tangente – ein vier-Kom-

ponenten Vektor also – ist dann:

T.xyz = TV ? (NV dot TV)NV
T.w = (NV x TV) dot BV < 0 ? -1 : 1

In einem Vertex Shader können Sie die Binor-

male aus dem obigen Vektor und der Norma-

len leicht berechnen (HLSL Syntax):

float3 B=cross(N,T.xyz)*T.w;

Bump Mapping mit
Per-Pixel-Lighting

Mit den obigen Berechnungen, deren Imple-

mentation Sie wie immer in unserem Beispiel-

programm vorfinden, haben Sie alles in der

195

PC
 M

ag
az

in
 1

2/
20

04
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Quelltexte sowie fertig übersetzte Routinen > CD
Praxis/Programmierung/PC Underground

Abbildung: Der korrekte Tangent Space richtet
sich am Texture Mapping aus.

Tangent Space: Das Prinzip hinter dem Bump
Mapping stellen diese Vektoren dar.

MINI-CDDVDCD

Hand, um Bump Mapping mit Per-Pixel-

Lighting (Pixel Shader 2.0) durchzuführen.

Für die Operationen im Vertex Shader haben

Sie zwei Optionen: Entweder Sie führen die

Berechnungen im Object Space durch, oder

Sie nehmen alle Berechnungen im World Spa-

ce vor. Wir beschreiben hier die letztere Va-

riante, die zum einen weniger und zudem we-

niger schwierige Operationen benötigt, wenn

Sie mehrere Lichtquellen in der Szene verwen-

den. Im Vertex Shader berechnen Sie – außer

der gewöhnlichen Koordinatentransformation

– die Binormale und transformieren N, T und

B anhand der Transformation Ihres Objektes

(Matrix matWV). Außerdem benötigen Sie die

World Space Position des Vertex:

N = mul(matWV, vertex.Nv);
T = mul(matWV, vertex.Tv.xyz);
B = cross(normal,tangent)*vertex.Tv.w;

// world space vertex pos
wsPos = mul(matWV, vertex.position);

// view/light vector
V = normalize(cameraPosition - wsPos);
L = normalize(lightPosition - wsPos);

Anschließend transformieren Sie V und L in

den Tangent Space (Vt, Lt), indem Sie die Ska-

larprodukte von V beziehungsweise L mit T, B

und N bilden. Ihr besonderes Augenmerk gilt

dabei der Reihenfolge der Verktoren in diesem

Skalarprodukt:

Lt=float3(dot(T,L),dot(B,L),dot(N,L));

Die Reihenfolge TBN ist wichtig: Erinnern Sie

sich an die Normal Maps – die Z-Komponente

zeigt von der Fläche weg, entspricht also der

Normalen!

Die Grafikkarte interpoliert nun für Sie V und L

(im Tangent Space) und Ihnen stehen die Wer-

te im Pixel Shader zur Verfügung. Dort norma-

lisieren Sie sie, lesen die Normal Map und ge-

gebenenfalls weitere Texturen mit diffusen

und spekularen Farbwerten und berechnen die

Beleuchtung wie oben. Das Resultat sehen Sie

im Bild links.

Parallax Bump Mapping

Als Parallaxe bezeichnet man ganz allgemein

die scheinbare Positionsänderung eines Objek-

tes durch eine Verschiebung der Position des

Beobachters. Wenn Sie nun eine unebene

Oberfläche – repräsentiert durch eine Normal

Map – auf ein planares Dreieck abbilden, geht

die dafür notwendige Höheninformation ver-

loren und die Oberfläche wirkt flach. Das fol-

gende Bild zeigt, was in diesem Fall passiert:

Die Textur oder Normal Map wird an der Stel-

le A ausgelesen, obwohl Sie die tatsächliche

Oberfläche an Punkt B sehen würden. Wenn

Sie also die Textur-Koordinate für jeden zu

zeichnenden Pixel korrigieren können, wür-

den Sie einen Parallax-Effekt simulieren. Dazu

benötigen Sie außer der Normalen aus der

Normal Map noch eine Höheninformation.

Hohe Bereiche verursachen eine Verschiebung

der Textur-Koordinate in Richtung des Betrach-

ters, niedrige Bereiche eine Verschiebung in

die andere Richtung. Die Höheninformation

können Sie entweder durch separate Textur

zugänglich machen oder im Alpha Kanal der

Normal Map speichern.

Was Sie also für den Parallax-Effekt benötigen

sind drei Dinge: eine ursprüngliche Textur-Ko-

ordinate, die durch die Texturierung gegeben

ist, die Richtung zum Betrachter im Tangent

Space (Vt) und den eben genannten Höhen-

wert der Oberfläche gespeichert in einer Tex-

tur. Den Höhenwert, der in der Textur den

Wertebereich [0;1] einnimmt, skalieren und

verschieben Sie auf [-x;x], wobei x ein sehr

kleiner Wert ist, etwa von der Größenordnung

0.02. Die verschobene Textur-Koordinate UV-

neu berechnen Sie aus der alten UValt:

UVneu = UValt + height * Vt.xy/Vt.z

Diese Berechnung stimmt allerdings nur unter

einer Voraussetzung. Nämlich dann, wenn die

Höhe bei A gleich der bei B ist, was in den sel-

tensten Fällen so sein wird. Wenn Sie nahezu

senkrecht auf eine Oberfläche sehen, werden

die Textur-Koordinaten-Differenzen kleiner

und die obige Annahme ist akzeptabel. Wenn

Sie flacher auf eine Oberfläche blicken, wer-

den die Verschiebungen der Textur-Koordina-

ten aber unendlich groß. Also gilt es, die Off-

sets nach oben zu beschränken. Die einfachste

und funktionierende Variante ist, die Verschie-

bung auf den Höhenwert bei A zu beschrän-

ken. Diese Option reduziert gleichzeitig den

Berechnungsaufwand, denn Sie erreichen ge-

nau das mit folgendem Code:

UVneu = UValt + height * Vt.xy

Die Verschiebung kann nicht größer als height

sein, da der Vektor Vt normalisiert ist und auch

seine 2D-Projektion Vt.xy maximal die Länge 1

haben kann. Um Parallax Bump Mapping zu

erhalten, müssen Sie lediglich Ihren normalen

Bump Mapping Pixel Shader so erweitern,

dass an der interpolierten Textur-Koordinate

zunächst der Höhenwert ausgelesen wird.

V = normalize(fragment.V);
height=tex2D

(heightMap,fragment.UValt);
height=height*0.04-0.02;
UVneu =fragment.UValt + height * V;

Die Normale und weitere Oberflächenattribu-

te lesen Sie an der Stelle UVneu aus Texturen

aus. Die Verschiebung der Textur-Koordinaten

ist nur eine Approximation der Oberflächenbe-

schaffenheit. Deswegen müssen Sie bei der

Gestaltung von Height Maps und deren Skalie-

rung etwas probieren, bis Sie ein optimales Er-

gebnis erhalten. Die besten Resultate erzielen

Sie, wenn Sie Height Maps ohne Sprünge und

nicht zu starken Variationen anlegen. Bei Ober-

flächen mit sehr steilen Flanken würden sich

außerdem Teile gegenseitig verdecken – ein Ef-

fekt, den Sie mit Parallax Bump Mapping oh-

nehin nicht erzielen können. : et

PROGRAMMIERUNG : PC UNDERGROUND

196

PC
 M

ag
az

in
 1

2/
20

04
 :

 w
w

w
.p

c-
m

ag
az

in
.d

e

Info
www.dachsbacher.de/pcu
www.infiscape.com/rd.html
developer.nvidia.com/object/nv_texture_tools.html

Parallax Bump
Mapping:
Wenn der Betrachter
seine Position ver-
schiebt, vermitteln
geänderte Textur-
Koordinaten eine bes-
sere Tiefe.

Virtuelle Wirklichkeit: Hier können Sie Bump
und Parallax Mapping vergleichen.

