PC Magazin 12/2004 : www.pc-magazin.de

PROGRAMMIERUNG

Bump Mapping ist ein
verbreitetes Verfahren, um
detaillierte Oberflachen mit
Texturierungsmethoden
darzustellen. Es geht aber
besser, ohne gleich
aufwéndiges Displacement
Mapping zu verwenden: mit
Parallax Bump Mapping!

Carsten Dachsbacher

PC UNDERGROUND

Parallax Bump Mapping

Raum ohne
Rechenaufwand

In mehreren bisherigen Ausgaben von

PC Underground haben Sie verschiede-
ne Methoden kennen gelernt, die alle unter
den Begriff Bump Mapping fallen. Allen diesen
Verfahren, wie Emboss, Dot-Product 3 oder
Bump Mapping mit per Pixel Lighting (ab Pixel
Shader 2.0) ist gemein, dass sie die Oberflache
selbst nicht verandern — lediglich die Oberfla-
chennormale wird bei der Beleuchtungsbe-
rechnung modifiziert, um den Eindruck von
komplexen Oberflachenstrukturen zu erwe-
cken. Oft genannt ist auch der Begriff Dis-
placement Mapping. Dies ist die naheliegenste
und aufwéndigste Variante, um komplexe
Oberflachen darzustellen: Die Oberflache wird
in eine Vielzahl von kleinen Dreiecken unter-
teilt. Die dadurch entstehenden Eckpunkte
werden senkrecht zur Oberflichennormale,
entsprechend einer Hohenfunktion oder Tex-
tur, verschoben. Fiir die neuen Vertices wer-
den auch neue Normalen berechnet, um die
Beleuchtung anzupassen.
Das hier vorgestellte Parallax Bump Mapping
reiht sich in die oben genannten Verfahren ein,
d.h. nur in die Beleuchtungsberechnung wird
eingegriffen. Aber es hat ein zusétzliches Fea-
ture, das den raumlichen Eindruck weiter ver-
starkt. Zuvor begleiten wir Sie aber bei einem
kleinen mathematischen Exkurs, um die
Grundlagen fiir perfektes Bump Mapping zu
schaffen.

Tangent Space

Der Tangent Space ist das wichtigste Konzept
beim Bump Mapping mit Normal Maps — auch
als Bump Maps bezeichnet. Normal Maps sind
nichts anderes als Texturen, deren Farbwerte
Oberflachennormalen kodieren und zwar so,
dass die rot/griin/blau-Werte die X/Y/Z-Kom-
ponenten der Normale sind. Diese Normal
Maps werden wie normale Texturen auf eine
Oberflache abgebildet. Bei der Beleuchtungs-
berechnung, die Sie fiir jeden Pixel durchfiih-
ren, wird die Normale ausgelesen. Allerdings
kénnen Sie diese Normale nicht direkt ver-
wenden, weil in den Normal Maps die Orien-
tierung der gerade zu zeichnenden Oberflache
nicht enthalten ist. Normal Maps konstruieren
Sie, als wiirde die Textur auf der X/Y-Ebene lie-
gen und die Z-Komponente nach oben zeigen.

Normal Maps: So definieren Sie die Oberfla-
chenstrukturen.

Quelltexte sowie fertig iibersetzte Routinen > CD
Praxis/Programmierung/PC Underground

An dieser Stelle kommt nun der Tangent
Space in Spiel. Dieser ist ein Koordinaten-Sys-
tem aus drei Achsen, das fiir jeden Vertex defi-
niert ist: Die X- und Y-Achse liegen in der Tan-
gentialebene an der Oberfliche an dem
Vertex. Diese beiden Achsen werden klassi-
scherweise mit Tangente und Binormale be-
zeichnet, obwohl fiir letztere die Bezeichnung
Bitangente korrekt wére. Die Z-Achse ist gleich
der Vertex-Normalen.

Diese Definition des Tangent Space ist kon-
form mit der der Normal Maps: Wenn Sie die
Richtung zur Lichtquelle L und zum Betrachter
V, die Sie fiir die Beleuchtungsberechnung be-
notigen, in den Tangent Space transformieren,
konnen Sie die Normale aus der Normal Maps
auslesen und direkt fiir die Beleuchtungsbe-
rechnung verwenden. Das Beispiel zeigt dies
mit Halfway-Vektoren und HLSL-Syntax:

float3 H=normalize(L+V);
float3 N=tex2D(bumpMap,texCoord)*2?1;

I=saturate(dot(N,L))*diffuseColor+
pow(saturate(dot(H,N)),spec)
*specColor;

Die Skalierung und Verschiebung des Werte-
bereichs bei der Normale ist notwendig, da in
der Textur Werte aus /0;1] enthalten sind. Die
Komponenten der Normalen werden zum
Speichern in der Textur vom Intervall /-1;1] in
das Intervall /0;1] abgebildet, um sie als RGB-
Farbwerte représentieren zu konnen. Solche
Normal Maps koénnen Sie mit diversen Tools
wie von nVidia (siehe Literatur) aus Graustu-
fen-Hohenbildern erzeugen. Die Tangent Spa-
ces berechnen Sie also pro Vertex, d.h. Sie an-
dern sich auch Uber ein zu zeichnendes Drei-
eck. Das stellt aber kein Problem dar: Sie
berechnen die Transformationen in den Tan-
gent Space in einem Vertex Shader und die
Grafikkarte interpoliert die entsprechenden
Vektoren fiir Sie.

Berechnung des Tangent Space

Damit diese Interpolation gut geht, miissen Sie
darauf achten, dass die Tangent Spaces der
drei Eckpunkte eines Dreiecks sinnvoll gewahlt
sind. Die einfachste Variante liefert in vielen
Féllen akzeptable Ergebnisse. Sie ist einfach
abhéngig von der Normalen, einen Tangent
Space zu konstruieren. Nehmen Sie an, die
Normale des Vertex ist N=(nx,ny,nz). Ein Vek-
tor, der sicher nicht dieselbe Richtung hat (es
sei denn, N wiére Nullvektor), ist A=(ny, -nz,
nx). Durch ein Kreuzprodukt erhalten Sie ei-
nen der Tangentialvektoren T=N x A und
durch ein weiteres, den zweiten: B=T x N. Das
ist alles leicht in einem Vertex Shader zu be-

rechnen, aber bessere Ergebnisse erhalten Sie,
wenn Sie den Tangent Space an dem Mapping
der Texturen ausrichten.

Betrachten Sie dazu das Bild rechts unten: Ei-
ne Textur wird auf ein Dreieck (UVW) abgebil-
det, wobei P=(px,py,pz)T und Q=(qx,qy,qz)T
die Differenzvektoren der Eckpunkte (V-U)
bzw. (W-U) sind. Die Differenzvektoren der
Textur-Koordinaten sind (s;,¢,)T bzw. (S5,t5)T,
d.h. der Wert s/ kennzeichnet die erste Kom-
ponente der Textur-Koordinate von V minus
der Ersten von U usw. Nun wollen wir zu-
nachst den Tangent Space fiir dieses Dreieck
bestimmen. Die Normale des Tangent Space,
also die Z-Achse, ist gleich der Normalen des
Dreiecks. Es verbleiben also die beiden Tan-
genten, die entlang der Ableitung der Textur-
Koordinaten zeigen sollen. Anschaulich be-
deutet das: Wenn Sie den Vektor (s;,¢;)T, gege-
ben im Tangent Space, aus diesem heraus
transformieren, wollen Sie den Vektor P erhal-
ten. Diese Transformation heif3t, die beiden
Komponenten mit der Tangenten bzw. Binor-
malen zu multiplizieren und zu addieren:

P =s;T+t;Bbzw. P = s;T+t,B

Was also bleibt, ist ein Gleichungssystem mit
sechs Unbekannten, namlich den Komponen-
ten von T und B, das sich mit Matrizen wie
folgt beschreiben lasst:

|px py pz]| |s1 t1] [Tx Ty Tz|
| | = | [> |
lax ay az| [s2 t2| |Bx By Bz|

Dieses losen Sie, indem Sie die Matrix mit den
Differenzen der Textur-Koordinaten invertieren
und danach an beiden Seiten multiplizieren:

[s1 t1]-1 1 [t2 -t1]

| = |
|s2 t2] s1*t2-s2*t1 |-s2 s1]

Auf der rechten Seite bleiben lediglich die Un-
bekannten. Nachdem Sie die Gleichungsseiten
getauscht haben, erhalten Sie:

|Tx Ty Tz|
| | =
|Bx By Bz|
1 [t2 -t1] |px py pz|
* | [* |
s1*t2-s2*t1 |-s2 s1| lax qy qz|

So erhalten Sie also T und B fiir ein Dreieck,
benétigen aber je einen Tangent Space pro
Vertex.

Dafiir legen Sie ein Array an, das fiir jeden Ver-
tex drei Vektoren speichert. Diese initialisieren
Sie zunédchst mit Null. Anschliefend berech-
nen Sie fiir jedes Dreieck den Tangent Space
und addieren /N, T und B auf den Tangent Spa-
ce seiner Eckpunkte.

DVD

Tangent Space: Das Prinzip hinter dem Bump
Mapping stellen diese Vektoren dar.

Textur® jhae

Abbildung: Der korrekte Tangent Space richtet
sich am Texture Mapping aus.

Abschlieffend miissen Sie die Tangent Spaces
pro Vertex (bezeichnet mit NV, TV, BV)) noch
orthogonalisieren — wie im Folgenden mit der
Gram-Schmidt-Orthogonalisierung. Um fiir je-
den Vertex spater nicht drei Vektoren zu spei-
chern, merken Sie sich lediglich die eine der
Tangenten und die Orientierung des Tangent
Spaces, also ob es sich um ein links- oder
rechtshéndiges Koordinatensystem handelt.
Die zu speichernde Tangente — ein vier-Kom-
ponenten Vektor also — ist dann:

T.xyz = TV ? (NV dot TV)NV
T.w= (NV x TV) dot BV < 0 ? -1 : 1

In einem Vertex Shader konnen Sie die Binor-
male aus dem obigen Vektor und der Norma-
len leicht berechnen (HLSL Syntax):

float3 B=cross(N,T.xyz)*T.w;

Bump Mapping mit
Per-Pixel-Lighting

Mit den obigen Berechnungen, deren Imple-
mentation Sie wie immer in unserem Beispiel-
programm vorfinden, haben Sie alles in der

PC Magazin 12/2004 : www.pc-magazin.de

PC Magazin 12/2004 : www.pc-magazin.de

PROGRAMMIERUNG :

PC UNDERGROUND

Polygon

Betrachter

Parallax Bump
Mapping:

Wenn der Betrachter
seine Position ver-
schiebt, vermitteln

%rflérhp

W W S

gednderte Textur-
Koordinaten eine bes-
sere Tiefe.

Texture Mapping

Texture Mapping
und Bump Mapping

mit Parallax Mapping

ohne Parallax Mapping

Virtuelle Wirklichkeit: Hier konnen Sie Bump
und Parallax Mapping vergleichen.

Hand, um Bump Mapping mit Per-Pixel-
Lighting (Pixel Shader 2.0) durchzufiihren.
Fiir die Operationen im Vertex Shader haben
Sie zwei Optionen: Entweder Sie fiihren die
Berechnungen im Object Space durch, oder
Sie nehmen alle Berechnungen im World Spa-
ce vor. Wir beschreiben hier die letztere Va-
riante, die zum einen weniger und zudem we-
niger schwierige Operationen bendtigt, wenn
Sie mehrere Lichtquellen in der Szene verwen-
den. Im Vertex Shader berechnen Sie — aufSer
der gewohnlichen Koordinatentransformation
— die Binormale und transformieren N, T und
B anhand der Transformation Ihres Objektes
(Matrix matWV). AuBBerdem bendétigen Sie die
World Space Position des Vertex:

N mul(matWwv, vertex.Nv);
T mul(matWv, vertex.Tv.xyz);
B = cross(normal,tangent)*vertex.Tv.w;

// world space vertex pos
wsPos = mul(matWV, vertex.position);

// view/light vector
V = normalize(cameraPosition
L = normalize(lightPosition

- wsPos);
- wsPos);

AnschlieBend transformieren Sie V und L in
den Tangent Space (Vt, Lt), indem Sie die Ska-
larprodukte von V beziehungsweise L mit T, B
und N bilden. Ihr besonderes Augenmerk gilt

dabei der Reihenfolge der Verktoren in diesem
Skalarprodukt:

Lt=float3(dot(T,L),dot(B,L),dot(N,L));

Die Reihenfolge TBN ist wichtig: Erinnern Sie
sich an die Normal Maps — die Z-Komponente
zeigt von der Flache weg, entspricht also der
Normalen!

Die Grafikkarte interpoliert nun fiir Sie Vund L
(im Tangent Space) und Ihnen stehen die Wer-
te im Pixel Shader zur Verfiigung. Dort norma-
lisieren Sie sie, lesen die Normal Map und ge-
gebenenfalls weitere Texturen mit diffusen
und spekularen Farbwerten und berechnen die
Beleuchtung wie oben. Das Resultat sehen Sie
im Bild links.

Parallax Bump Mapping

Als Parallaxe bezeichnet man ganz allgemein
die scheinbare Positionsanderung eines Objek-
tes durch eine Verschiebung der Position des
Beobachters. Wenn Sie nun eine unebene
Oberflache — représentiert durch eine Normal
Map — auf ein planares Dreieck abbilden, geht
die dafiir notwendige Hoheninformation ver-
loren und die Oberflache wirkt flach. Das fol-
gende Bild zeigt, was in diesem Fall passiert:
Die Textur oder Normal Map wird an der Stel-
le A ausgelesen, obwohl Sie die tatsachliche
Oberflache an Punkt B sehen wiirden. Wenn
Sie also die Textur-Koordinate fiir jeden zu
zeichnenden Pixel korrigieren kénnen, wiir-
den Sie einen Parallax-Effekt simulieren. Dazu
bendétigen Sie aufler der Normalen aus der
Normal Map noch eine Hoheninformation.
Hohe Bereiche verursachen eine Verschiebung
der Textur-Koordinate in Richtung des Betrach-
ters, niedrige Bereiche eine Verschiebung in
die andere Richtung. Die Hoheninformation
konnen Sie entweder durch separate Textur
zuganglich machen oder im Alpha Kanal der
Normal Map speichern.

Was Sie also fiir den Parallax-Effekt bendtigen
sind drei Dinge: eine urspriingliche Textur-Ko-
ordinate, die durch die Texturierung gegeben
ist, die Richtung zum Betrachter im Tangent

Space (Vt) und den eben genannten Hohen-
wert der Oberflache gespeichert in einer Tex-
tur. Den Hohenwert, der in der Textur den
Wertebereich /0;1] einnimmt, skalieren und
verschieben Sie auf /-x;x/, wobei x ein sehr
kleiner Wert ist, etwa von der Gro3enordnung
0.02. Die verschobene Textur-Koordinate UV-
neu berechnen Sie aus der alten UValt:

UVneu = UValt + height * Vt.xy/Vt.z

Diese Berechnung stimmt allerdings nur unter
einer Voraussetzung. Namlich dann, wenn die
Hohe bei A gleich der bei B ist, was in den sel-
tensten Féllen so sein wird. Wenn Sie nahezu
senkrecht auf eine Oberflache sehen, werden
die Textur-Koordinaten-Differenzen kleiner
und die obige Annahme ist akzeptabel. Wenn
Sie flacher auf eine Oberflache blicken, wer-
den die Verschiebungen der Textur-Koordina-
ten aber unendlich grof. Also gilt es, die Off-
sets nach oben zu beschranken. Die einfachste
und funktionierende Variante ist, die Verschie-
bung auf den Héhenwert bei A zu beschran-
ken. Diese Option reduziert gleichzeitig den
Berechnungsaufwand, denn Sie erreichen ge-
nau das mit folgendem Code:

UVneu = UValt + height * Vt.xy

Die Verschiebung kann nicht grof3er als height
sein, da der Vektor V¢ normalisiert ist und auch
seine 2D-Projektion Vi.xy maximal die Lange /
haben kann. Um Parallax Bump Mapping zu
erhalten, miissen Sie lediglich IThren normalen
Bump Mapping Pixel Shader so erweitern,
dass an der interpolierten Textur-Koordinate
zunachst der Hohenwert ausgelesen wird.

V = normalize(fragment.V);
height=tex2D
(heightMap,fragment.Uvalt);
height=height*0.04-0.02;
UVneu =fragment.UValt + height * V;
Die Normale und weitere Oberflachenattribu-
te lesen Sie an der Stelle UVneu aus Texturen
aus. Die Verschiebung der Textur-Koordinaten
ist nur eine Approximation der Oberfldchenbe-
schaffenheit. Deswegen miissen Sie bei der
Gestaltung von Height Maps und deren Skalie-
rung etwas probieren, bis Sie ein optimales Er-
gebnis erhalten. Die besten Resultate erzielen
Sie, wenn Sie Height Maps ohne Spriinge und
nicht zu starken Variationen anlegen. Bei Ober-
flachen mit sehr steilen Flanken wiirden sich
auBlerdem Teile gegenseitig verdecken — ein Ef-
fekt, den Sie mit Parallax Bump Mapping oh-
nehin nicht erzielen kénnen. et

Info

www.dachsbacher.de/pcu
www.infiscape.com/rd.html
developer.nvidia.com/object/nv_texture_tools.html

